
CS 417 – DISTRIBUTED SYSTEMS

Paul Krzyzanowski

Week 3: Part 2
Logical Clocks

© 2021 Paul Krzyzanowski. No part of this
content, may be reproduced or reposted in
whole or in part in any manner without the
permission of the copyright owner.

Logical clocks

Assign sequence numbers to messages
– All cooperating processes can agree on order of events
– vs. physical clocks: report time of day

Assume no central time source
– Each system maintains its own local clock
– No total ordering of events
• No concept of happened-when

• Assume multiple actors (processes)
– Each process has a unique ID
– Each process has its own incrementing counter

2© 2021 Paul Krzyzanowski

Happened-before

Lamport’s “happened-before” notation

a ® b event a happened before event b
e.g.: a: message being sent, b: message received

Transitive:
if a ® b and b ® c then a ® c

3© 2021 Paul Krzyzanowski

Logical clocks & concurrency

Assign a “clock” value to each event
– if a ® b then clock(a) < clock(b) since time cannot run backwards

If a and b occur on different processes that do not exchange messages,
then neither a ® b nor b ® a are true
– These events are concurrent
– Otherwise, they are causal

4© 2021 Paul Krzyzanowski

Event counting example

• Three systems: P1, P2, P3

• Events a, b, c, …

• Local event counter on each system

• Systems occasionally communicate

5© 2021 Paul Krzyzanowski

Event counting example

a b

i

kj

P1

P2

P3

1 2

1 3

21

d f

g
3

c

2

4 6

Bad ordering:

e à h but 5 ≥ 2

f à k but 6 ≥ 2

h

e

5

6© 2021 Paul Krzyzanowski

Lamport Timestamps

• Each process has its own clock (sequence #)
• Clock is incremented before each event
• Each message carries a timestamp of the sender’s clock
• When a message arrives:

if receiver’s clock ≤ message_timestamp
set system clock to (message_timestamp + 1)

set event timestamp to the system's clock

Lamport timestamps allow us to maintain time ordering among related
events ⇒ Partial ordering

7© 2021 Paul Krzyzanowski

Event counting example

a b

i

kj

P1

P2

P3

1 2

1 7

21

d f

g
3

c

2

4 6

6

7

h

e

5

Applying Lamport timestamps

8

We have good ordering where we used to have bad ordering:

e à h and 5 < 6

f à k and 6 < 7

© 2021 Paul Krzyzanowski

Summary

• Lamport timestamps need a monotonically increasing software counter

• Incremented when events that need to be timestamped occur
– Every message that is sent contains the timestamp
– Every received message sets the clock to max(msg_timestamp + 1, clock)
– The event is associated with the value of the clock (Lamport timestamp)

• For any two events, where a ® b:
L(a) < L(b)

© 2021 Paul Krzyzanowski 9

Problem: Identical timestamps

a®b, b®c, … : local events sequenced
i®c, f®d , d®g, … : Lamport imposes a

send®receive relationship

Concurrent events (e.g., b & g; i & k) may have the same timestamp … or not

a b

h i

kj

P1

P2

P3

1 2

1 7

71

d f

g
3

c

6

4 6

e

5

10© 2021 Paul Krzyzanowski

Unique timestamps (total ordering)

We can force each timestamp to be unique
– Define global logical timestamp (Ti, i)
• Ti represents local Lamport timestamp
• i represents process number (globally unique)
– e.g., (host address, process ID)

– Compare timestamps:
(Ti, i) < (Tj, j)

if and only if
Ti < Tj or
Ti = Tj and i < j

Does not necessarily relate to actual sequence of events

© 2021 Paul Krzyzanowski 11

Unique (totally ordered) timestamps

a b

i

kj

P1

P2

P3

d f

g

c

h

e

1.1 2.1

1.2 7.2

7.31.3

3.1

6.2

4.1 6.15.1

12© 2021 Paul Krzyzanowski

Problem: Detecting causal relations

If L(e) < L(e′)
– We cannot conclude that e ® e′

By looking at Lamport timestamps
– We cannot conclude which events are causally related

Solution: use a vector clock

Vector clocks are a way to prove the sequence of events by keeping
version history based on each process that created an event

13© 2021 Paul Krzyzanowski

Example

© 2021 Paul Krzyzanowski 14

Alice: 1

Pizza

Alice writes the value & sends to group

Alice: 1, Bob: 1

Chinese

Bob reads ("Pizza", <alice:1>), modifies the value & sends to group

Bob’s version updates Alice’s choice

Alice: 2, Bob: 1

Moroccan

Alice reads ("Chinese", <alice:1, bob:1>), modifies the value & sends to group

Alice makes changes over Bob’s choice

To Bob

To Cindy

To David

To Alice

To Cindy

To David

To Bob

To Cindy

To David

Receivers
<alice: 1, bob:1> is causal to & follows <alice: 1>

Receivers
<alice: 2, bob:1> is causal to & follows <alice: 1, bob:1>

• Group of processes: Alice, Bob, Cindy, David
• They send messages to decide: “what food should we eat?”
• Each process keeps a local counter

Example

© 2021 Paul Krzyzanowski 15

Alice: 2, Bob: 1, Cindy: 1

Thai

Cindy modifies the choice & sends to group

Alice: 2, Bob: 2

Indian

Bob concurrently modifies & sends to group

Cindy & Bob’s changes are concurrent – members must resolve conflict

To Alice

To Bob

To David

To Alice

To Cindy

To David

Receiver
<alice: 2, bob:1, cindy:1> is concurrent with <alice: 2, bob:2>

Receivers
<alice: 2, bob:1, cindy:1> is causal to & follows

<alice: 1, bob:1> and <alice: 2, bob:1>

Receivers
<alice: 2, bob:2> is causal to & follows

<alice: 1, bob:1> and <alice: 2, bob:1>

Vector clocks: Rules

1. Vector initialized to 0 at each process i for N processes
Vi [j] = 0 for i, j =1, …, N

2. Process increments its element of the vector in local vector before timestamping event:
Vi [i] = Vi [i] +1

3. Message is sent from process Pi with Vi attached to it

4. When Pj receives message, compares vectors element by element and sets local vector
to higher of two values

Vj [i] = max(Vi [i], Vj [i]) for i = 1, … , N

For example,
received: [0, 5, 12, 1], have: [2, 8, 10, 1]
new timestamp: [2, 8, 12, 1]

© 2021 Paul Krzyzanowski 16

Comparing vector timestamps

Define
V = V′ iff V [i] = V′[i] for i = 1 … N
V < V′ iff V £ V′ and V [i] £ V′[i] for i = 1 … N

For any two events e, e′
if e ® e′ then V(e) < V(e′) … just like Lamport timestamps
if V(e) < V(e’) then e ® e′

Two events are concurrent if neither V(e) <V(e′) nor V(e′) < V(e)

17© 2021 Paul Krzyzanowski

Vector timestamps

a b

c d

fe

(0,0,0)
P1

P2

P3

(0,0,0)

(0,0,0)

18© 2021 Paul Krzyzanowski

Vector timestamps

a b

c d

fe

(0,0,0)
P1

P2

P3

(0,0,0)

(0,0,0)

(1,0,0)

Event timestamp
a (1,0,0)

19© 2021 Paul Krzyzanowski

Vector timestamps

a b

c d

fe

(0,0,0)
P1

P2

P3

(0,0,0)

(0,0,0)

(1,0,0)

Event timestamp
a (1,0,0)
b (2,0,0)

(2,0,0)

20© 2021 Paul Krzyzanowski

Vector timestamps

a b

c d

fe

(0,0,0)
P1

P2

P3

(0,0,0)

(0,0,0)

(1,0,0)

Event timestamp
a (1,0,0)
b (2,0,0)
c (2,1,0)

(2,0,0)

(2,1,0)

21© 2021 Paul Krzyzanowski

Vector timestamps

a b

c d

fe

(0,0,0)
P1

P2

P3

(0,0,0)

(0,0,0)

(1,0,0)

Event timestamp
a (1,0,0)
b (2,0,0)
c (2,1,0)
d (2,2,0)

(2,0,0)

(2,1,0) (2,2,0)

22© 2021 Paul Krzyzanowski

Vector timestamps

a b

c d

fe

(0,0,0)
P1

P2

P3

(0,0,0)

(0,0,0)

(1,0,0)

Event timestamp
a (1,0,0)
b (2,0,0)
c (2,1,0)
d (2,2,0)
e (0,0,1)

(2,0,0)

(2,1,0) (2,2,0)

(0,0,1)

23© 2021 Paul Krzyzanowski

Vector timestamps

a b

c d

fe

(0,0,0)
P1

P2

P3

(0,0,0)

(0,0,0)

(1,0,0)

Event timestamp
a (1,0,0)
b (2,0,0)
c (2,1,0)
d (2,2,0)
e (0,0,1)
f (2,2,2)

(2,0,0)

(2,1,0) (2,2,0)

(0,0,1) (2,2,2)

24© 2021 Paul Krzyzanowski

Vector timestamps

a b

c d

fe

(0,0,0)
P1

P2

P3

(0,0,0)

(0,0,0)

(1,0,0)

Event timestamp
a (1,0,0)
b (2,0,0)
c (2,1,0)
d (2,2,0)
e (0,0,1)
f (2,2,2)

(2,0,0)

(2,1,0) (2,2,0)

(0,0,1) (2,2,2)

concurrent events

25© 2021 Paul Krzyzanowski

Vector timestamps

a b

c d

fe

(0,0,0)
P1

P2

P3

(0,0,0)

(0,0,0)

(1,0,0)

Event timestamp
a (1,0,0)
b (2,0,0)
c (2,1,0)
d (2,2,0)
e (0,0,1)
f (2,2,2)

(2,0,0)

(2,1,0) (2,2,0)

(0,0,1) (2,2,2)

concurrent events

26© 2021 Paul Krzyzanowski

Vector timestamps

a b

c d

fe

(0,0,0)
P1

P2

P3

(0,0,0)

(0,0,0)

(1,0,0)

Event timestamp
a (1,0,0)
b (2,0,0)
c (2,1,0)
d (2,2,0)
e (0,0,1)
f (2,2,2)

(2,0,0)

(2,1,0) (2,2,0)

(0,0,1) (2,2,2)

concurrent events

27© 2021 Paul Krzyzanowski

Vector timestamps

a b

c d

fe

(0,0,0)
P1

P2

P3

(0,0,0)

(0,0,0)

(1,0,0)

Event timestamp
a (1,0,0)
b (2,0,0)
c (2,1,0)
d (2,2,0)
e (0,0,1)
f (2,2,2)

(2,0,0)

(2,1,0) (2,2,0)

(0,0,1) (2,2,2)

concurrent events

28© 2021 Paul Krzyzanowski

Generalizing Vector Timestamps

• A “vector” can be a list of tuples instead of a vector of numbers:
– For processes P1, P2, P3, …
– Each process has a globally unique Process ID, Pi (e.g., MAC_address:PID)
– Each process maintains its own timestamp: TP1, TP2, …
– Vector: { <P1, TP1>, <P2, TP2>, <P3, TP3>, … }

• One process may only have only partial knowledge of others
– New timestamp for a received message:
• Compare all matching sets of process IDs: set to highest of values
• Any non-matched <P, T> sets get added to the timestamp

– For a happened-before relation:
• At least one set of process IDs must be common to both timestamps
• Match all corresponding <P, T> sets: A:<Pi, Ta>, B:<Pi, Tb>
• If Ta≤ Tb for all common processes P, then A → B

© 2021 Paul Krzyzanowski 29

Vector Clocks Summary

• Vector clocks give us a way of identifying which events are causally
related
• We are guaranteed to get the sequencing correct
But
– The size of the vector increases with more actors

… and the entire vector must be stored with the data
– Comparison takes more time than comparing two numbers
– What if messages are concurrent?
• App will have to decide how to handle conflicts

© 2021 Paul Krzyzanowski 30

Summary: Logical Clocks & Partial Ordering

• Causality
– If a ® b then event a can affect event b

• Concurrency
– If neither a ® b nor b ® a then one event cannot affect the other

• Partial Ordering
– Causal events are sequenced

• Total Ordering
– All events are sequenced

31© 2021 Paul Krzyzanowski

The End

32© 2021 Paul Krzyzanowski

