
CS 417 – DISTRIBUTED SYSTEMS

Paul Krzyzanowski

Week 4: Part 1
Group Communication

© 2021 Paul Krzyzanowski. No part of this
content, may be reproduced or reposted in
whole or in part in any manner without the
permission of the copyright owner.

Modes of communication
• One-to-One
– Unicast
• 1«1
• Point-to-point

– Anycast
• 1®nearest 1 of several identical nodes
• Introduced with IPv6; used with BGP routing protocol

• One-to-many
– Broadcast
• 1®all

– Multicast
• 1®many = group communication

2© 2021 Paul Krzyzanowski

Groups
Groups allow us to deal with a

collection of processes as one abstraction

Send message to one entity
– Deliver to entire group

Groups are dynamic
– Created and destroyed
– Processes can join or leave
• May belong to 0 or more groups

3© 2021 Paul Krzyzanowski

Primitives:
• create_group*
• delete_group*
• join_group
• leave_group
• send_to_group
• query_membership*

*Optional

Design Issues
• Closed vs. Open
– Closed: only group members can send messages

• Peer vs. Hierarchical
– Peer: each member communicates with the entire group
– Hierarchical: go through coordinator(s)
• Root coordinator: forwards message to appropriate subgroup coordinators

• Managing membership & group creation/deletion
– Distributed vs. centralized

• Leaving & joining must be synchronous

• Fault tolerance & message order
– Reliable message delivery? What about missing members?
– Do messages need to be received in the order they were sent?

4© 2021 Paul Krzyzanowski

Failure considerations
The same things bite us with unicast communication

• Crash failure
– Process stops communicating

• Omission failure (typically due to network)
– Send omission: A process fails to send messages
– Receive omission: A process fails to receive messages

• Byzantine failure
– Some messages are faulty

• Partitions
– The network may get segmented, dividing the

group into two or more unreachable sub-groups

© 2021 Paul Krzyzanowski 5

Implementing
Group Communication Mechanisms

© 2021 Paul Krzyzanowski 6

Hardware multicast
If we have hardware support for multicast
– Group members listen on network address

listen addr = m1

listen addr = m1

listen addr = m1

send addr=m1

7© 2021 Paul Krzyzanowski

Broadcast: Diffusion Group
Diffusion group: send to all clients & then filter
– Software filters incoming multicast address
– May need to use auxiliary address to identify the group

(not in the network address header)

broadcast(id=m)
accept id=m

accept id=m

accept id=m

discard id=m

discard id=m

8© 2021 Paul Krzyzanowski

Hardware multicast & broadcast
• Ethernet supports both multicast & broadcast

• Limited to local area networks

© 2021 Paul Krzyzanowski 9

Software implementation: multiple unicasts
Sender knows group members

listen local addr = a2

listen local addr = a3

listen local addr = a5

send(a2)

send(a3)

10© 2021 Paul Krzyzanowski

send(a5)

Software implementation: hierarchical
Multiple unicasts via group coordinator
– Coordinator knows group members
– Coordinator iterates through group members
– May support a hierarchy of coordinators

listen local addr = a2

listen local addr = a3

listen local addr = a5

coordinator
send(a2)

send(a3)

send(a5)send(c)

11© 2021 Paul Krzyzanowski

Reliability of multicasts

© 2021 Paul Krzyzanowski 12

Unreliable multicast (best effort)
• Basic multicast

• Hope it gets to all the members

• Best-effort delivery
– The system (computers & network) tries to deliver messages to their

destinations but does not retransmit corrupted or lost data

13© 2021 Paul Krzyzanowski

Reliable multicast
• All non-faulty group members will receive the message
– Assume sender & recipients will remain alive
– Network may have glitches
• Try to retransmit undelivered messages … but eventually give up

– It’s OK if some group members don’t get the message

• Acknowledgements
– Send message to each group member
– Wait for acknowledgement from each group member
– Retransmit to non-responding members
– Subject to feedback implosion in group communication
• Feedback implosion = a system sends one message but gets many back in response. E.g., send

a message to a group of 1,000 members and get back 1,000 acknowledgements.

© 2021 Paul Krzyzanowski 14

Optimizing Acknowledgements
• Easiest thing is to wait for an ACK before sending the next message
– But that incurs a round-trip delay

• Optimizations
– Pipelining
• Send multiple messages – receive ACKs asynchronously
• Set timeout – retransmit message for missing ACKs

– Cumulative ACKs
• Wait a little while before sending an ACK
• If you receive other messages, then send one ACK for everything

– Piggybacked ACKs
• Send an ACK along with a return message

– Negative ACKs
• Use a sequence # on each message
• Receiver requests retransmission of a missed message
• More efficient but requires sender to buffer messages indefinitely
• Need to account for the receiver not sending a negative ACK because it is dead

TCP (not multicast) does the first three of these … but with groups we must do this for each recipient

© 2021 Paul Krzyzanowski 15

Atomic multicast
Atomicity – “all or nothing” property

A message sent to a group arrives at all group members
If it fails to arrive at any member, no member will process it

Problems
– Unreliable network
• Each message should be acknowledged
• Acknowledgements can be lost

– Recipient might die
– Message sender might die

16© 2021 Paul Krzyzanowski

Achieving atomicity
• General idea
– Ensure that every recipient acknowledges receipt of the message
– Only then allow the application to process the message
– If we give up on a recipient

then no recipient can process that received message

• Easier said than done!
– What if a recipient dies after acknowledging the message?
• Is it obligated to restart?
• If it restarts, will it know to process the message?

– What if the sender (or coordinator) dies partway through the protocol?

© 2021 Paul Krzyzanowski 17

Achieving atomicity – example 1
Retry through network failures & system downtime
• Sender & receivers maintain a persistent log
• Each message has a unique ID so we can discard duplicates
• Sender

– Write message to log
– Send message to all group members
– Wait for acknowledgement from each group member
– Write acknowledgement to log
– If timeout on waiting for an acknowledgement, retransmit to group member

• Receiver
– Log received non-duplicate message to persistent log
– Send acknowledgement

• NEVER GIVE UP!
– Assume that dead senders or receivers will be rebooted and will restart where they left off

© 2021 Paul Krzyzanowski 18

Achieving atomicity – example 2
Redefine the group
• If some members failed to receive the message:
– Remove the failed members from the group
– Then allow existing members to process the message

• But still need to account for the death of the sender
– Surviving group members may need to take over to ensure all current group members

receive the message

• This is the approach used in virtual synchrony

© 2021 Paul Krzyzanowski 19

Message ordering

© 2021 Paul Krzyzanowski 20

Good Ordering

message a

a

order received

a, b

a, b

message b

b

21© 2021 Paul Krzyzanowski

Bad Ordering

message a

a

order received

a, b

b, a

message b

b

22© 2021 Paul Krzyzanowski

Good Ordering

Process 0

Process 1

message a

a

message b
b

order received

a, b

a, b

23© 2021 Paul Krzyzanowski

Bad Ordering

Process 0

Process 1

message a

a

message b
b

order received

a, b

b, a

24© 2021 Paul Krzyzanowski

Good ordering = consistent order
If a node sends a sequence of messages, all group members will receive the messages in the same order

Bad ordering = Some group members receive the messages in a different order than others

Sending vs. Receiving vs. Delivering
• Multicast receiver algorithm decides when to deliver a message to the

process.

• A received message may be:
– Delivered immediately

(put on a delivery queue that the process reads)

– Placed on a hold-back queue
(because we need to wait for an earlier message)

– Rejected/discarded
(duplicate or earlier message that we no longer want)

25© 2021 Paul Krzyzanowski

Sending, delivering, holding back

sender receiver

Multicast sending
algorithm

Multicast receiving
algorithm

hold-back
queue

delivery
queue

discard

?
message transmission

deliver

26© 2021 Paul Krzyzanowski

send

receive

Global time ordering

• All messages are delivered in exact order sent

• Assumes two events never happen at the exact same time!

• Difficult (impossible) to achieve

• Not viable

© 2021 Paul Krzyzanowski 27

Total ordering
• Consistent ordering at all receivers
• All messages are delivered at all group members in the same order
– They are sorted into the same sequence before being placed on the delivery queue

Implementation:
• Attach unique totally sequenced message ID
• Receiver delivers a message to the application only if it has received all messages with a smaller ID
• Otherwise, the message sits in the hold-back queue

1. If a process sends m before m’
then any other process that delivers m’ will have delivered m.

2. If a process delivers m’ before m” then every other process will
have delivered m’ before m”.

28© 2021 Paul Krzyzanowski

Causal ordering
Also known as partial ordering
Messages sequenced by only if they are causally related
(e.g., by Lamport or Vector timestamps)

If message m’ is causally dependent on message m,
all processes must deliver m before m’

If multicast(G, m) → multicast(G, m’)
then every process that delivers m’ will have delivered m

29© 2021 Paul Krzyzanowski

Causal ordering example

© 2021 Paul Krzyzanowski 30

P0

P1

P2

m0

m1

time

P0

P1

P2

m0

m2 time

m1 is causally dependent on the receipt of m0
⇒ m1 must be delivered only after m0 has been delivered

m0 and m2 have no causal relationship (they are concurrent)
⇒ Any process can deliver these messages in any order

{ m0, m1 }

{ m0, m1 }

{ m0, m1 }

{ m0, m2 }

{ m2, m0 }

{ m2, m0 }

C
au

sa
l

C
on

cu
rre

nt

hold back

C
AU

SA
L

C
O
N
C
U
R
R
EN

T This is OK

This is OK too

Causal ordering – implementation

© 2021 Paul Krzyzanowski 32

Pa Pb

(M, Va)

Implementation: Pa receives a message from Pb

• Each process keeps a precedence vector

• Vector is updated on multicast send and receive events
– Each position in the vector = sequence number of latest message from the

corresponding group member that causally precedes the event: [P0, P1, P2, …]

Precedence Vector Va[] Precedence Vector Vb[]

Causal ordering – implementation
Algorithm
– When Pa sends a message, it increments its own entry and sends the vector

Va[a] = Va[a] + 1 – where a is the index for process Pa

Send Va with the message

– When Pb receives a message from Pa
1. Check that the message arrived in sequential order from Pa:

Va[a] == Vb[a] + 1 ?
2. Check that the message does not causally depend on messages Pb has not received from other

processes:
∀i, i ≠ a: Va[i] ≤ Vb[i] ?

The sequence # of every other message must be ≤ the one Pb has.
• If both conditions are satisfied, Pb will deliver the message to the application:

At Pb, update the precedence vector: Vb[a] = Vb[a]+1

• Otherwise, hold the message until these conditions are satisfied
© 2021 Paul Krzyzanowski 33

Causal Ordering: Example

© 2021 Paul Krzyzanowski 34

Do
n’

t d
el

ive
r t

hi
s!

P0

P1

P2

m0

m1

time

{ m0, m1 }

{ m0, m1 }

{ m1, m0 }

P2 receives message m1 from P1 with V1=(1,1,0)
(1) Is this in sequential order from P1?

Compare current V on P2: V2=(0,0,0) with received V from P1, V1=(1,1,0)
Yes: V2[1] = 0, received V1[1] = 1 ⇒ sequential order – message 1 follows message 0

(2) Is V1[i] ≤ V2[i] for all other i?
Compare the same vectors: V1=(1,1,0) vs. V2=(0,0,0)
No, because (V1[0] = 1) > (V2[0] = 0)

– this means P2 has seen msg #1 from P0 that P2 has not yet received
Therefore: hold back m1 at P2

(1,0,0)

(1,0,0)

(1,1,0)

(1,1,0)
(0,0,0)

(0,0,0)

(0,0,0)

P0

P1

P2

m0

m1

time

{ m0, m1 }

{ m0, m1 }

{ m1, m0 }

(1,0,0)

(1,0,0)

(1,1,0)

(0,0,0)

(0,0,0)

(0,0,0)

Causal Ordering: Example

© 2021 Paul Krzyzanowski 35

Next, P2 receives message m0 from P0 with V=(1,0,0)
(1) Is m0 in sequential order from P0?

Compare current V on P2: V2=(0,0,0) with received V from P0, V0=(1,0,0)
Yes: V2[0] = 0, received V0[0] = 1 ⇒ sequential order

(2) Is V0[i] ≤ V2[i] for all other i?
Yes. Element 0: (0 ≤ 0), Element 1: (0 ≤ 0)

Deliver m0 on P2 and update precedence vector on P2 from (0, 0, 0) to (1, 0, 0)
Now check hold-back queue. Can we deliver m1?

(1,1,0) ←holding m1

(1,0,0)m1

Causal Ordering: Example

© 2021 Paul Krzyzanowski 36

P0

P1

P2

m0

m1

time

{ m0, m1 }

{ m0, m1 }

{ m1, m0 }

Check the message in the hold-back set
(1) Is the held-back message m1 in sequential order from P0?
Compare element 1 on current V on P2: V2=(1,0,0) with held-back V from P0, V0=(1,1,0)
Yes: (current V2[1] = 0) vs. (received V1[1] = 1) ⇒ sequential

(2) Is V0[i] ≤ V2[i] for all other i?
Now yes. (V0[0] = 1) ≤ (V2[0] = 1) and element 2: (V0[2] = 0) ≤ (V2[2] = 0)

Deliver m1 on P2 and update the precedence vector on P2: V2 = (1, 1, 0)

(1,0,0)

(1,0,0)
(1,1,0)

(1,1,0)

(0,0,0)

(0,0,0)

(0,0,0)

(1,0,0)

Causal Ordering
• Causal ordering can be implemented more efficiently than total ordering:
– No need for a global sequencer

– Expect reliable delivery but we may not need to send immediate
acknowledgements

© 2021 Paul Krzyzanowski 37

Sync ordering
• Messages can be delivered in any order

• Special message type
– Synchronization primitive = barrier
– Ensure all pending messages are delivered before any additional (post-sync)

messages are accepted

© 2021 Paul Krzyzanowski 38

If m is sent with a sync-ordered primitive and m’ is multicast, then
every process either delivers m before m’ or delivers m’ before m.

Multiple sync-ordered primitives from the same process must be
delivered in order.

Single Source FIFO (SSF) ordering
• Messages from the same source are delivered in the order they were

sent
– Message m must be delivered before message m’ iff m was sent before m’

from the same host

© 2021 Paul Krzyzanowski 39

If a process issues a multicast of m followed by m’, then every
process that delivers m’ will have already delivered m.

Unordered multicast

• Messages can be delivered in different order to different members

• Order per-source does not matter

© 2021 Paul Krzyzanowski 40

Multicasting considerations

atomic

reliable

unreliable

unordered
syn

c
causal

total
global

Single-Source FIFO

Message Ordering

Re
lia

bi
lit

y

41© 2021 Paul Krzyzanowski

The End

42© 2021 Paul Krzyzanowski

