
CS 417 – DISTRIBUTED SYSTEMS

Paul Krzyzanowski

Week 5: Part 1
Distributed Mutual Exclusion

© 2021 Paul Krzyzanowski. No part of this
content, may be reproduced or reposted in
whole or in part in any manner without the
permission of the copyright owner.

Process Synchronization
Techniques to coordinate execution among processes
– One process may have to wait for another
– Shared resource (critical section) may require exclusive access

Mutual exclusion
– Examples
• Update a fields in database tables
• Modify a file
• Modify file contents that are replicated on multiple servers

– Easy to handle if the entire request is atomic
• Contained in a single message; server can manage mutual exclusion

– Needs to be coordinated if the request comprises multiple messages or spans multiple
systems

March 1, 2021 CS 417 © 2021 Paul Krzyzanowski 2

Centralized Systems
Achieve mutual exclusion via:
– Test & set in hardware
– Semaphores
– Messages (inter-process)
– Condition variables

3March 1, 2021 CS 417 © 2021 Paul Krzyzanowski

Distributed Mutual Exclusion
Goal:
Create an algorithm to allow a process to request and obtain exclusive access to
a resource that is available on the network

Required properties:
Safety: At any instant, only one process may hold the resource

Liveness: The algorithm should make progress; processes should not wait forever for
messages that will never arrive

Also desired:

Fairness: Each process gets a fair chance to hold the resource: bounded wait time & in-
order processing

March 1, 2021 CS 417 © 2021 Paul Krzyzanowski 4

Assumptions
Resource identification
– Assume there is agreement on how a resource is identified
• Pass the identifier with requests
• e.g., lock("printer"), lock("table:employees"), lock("table:employees;row:15"), lock("shared_file.txt")
…and every process can identify itself uniquely

– We’ll just use request(R) to request exclusive access to resource R

• Process identification
– Every process has a unique ID (e.g., address.process_id)

• Reliable communication
– Network messages are reliable (may require retransmission of lost/corrupted messages)

• Live processes
– The processes in the system do not die

March 1, 2021 CS 417 © 2021 Paul Krzyzanowski 5

Categories of mutual exclusion algorithms
• Centralized
– A process can access a resource because a central coordinator allowed it to

do so

• Token-based
– A process can access a resource if it is holding a token permitting it to do so

• Contention-based
– A process can access a resource via distributed agreement

6March 1, 2021 CS 417 © 2021 Paul Krzyzanowski

Centralized algorithm
• Mimic single processor system

• One process elected as coordinator

P

Crequest(R)

grant(R)

1. Request resource
2. Wait for response
3. Receive grant
4. access resource
5. Release resource

release(R)

7March 1, 2021 CS 417 © 2021 Paul Krzyzanowski

Centralized algorithm
If another process claimed resource:
– Coordinator does not reply until release
– Maintain queue: service requests in FIFO order

P0

C

request(R)

grant(R)

P1request(R)

R Request Queue
P1

8March 1, 2021 CS 417 © 2021 Paul Krzyzanowski

R in use by: P0

Centralized algorithm
If another process claimed resource:
– Coordinator does not reply until release
– Maintain queue: service requests in FIFO order

P0

C

P1

P2

R Request Queue
P1

request(R)

P2

9March 1, 2021 CS 417 © 2021 Paul Krzyzanowski

R in use by: P0

Centralized algorithm
If another process claimed resource:
– Coordinator does not reply until release
– Maintain queue: service requests in FIFO order

P0

C

release(R)

P1

P2

R Request Queue
P1

P2
grant(R)

10March 1, 2021 CS 417 © 2021 Paul Krzyzanowski

R in use by: P0R in use by: P1

P2

Centralized algorithm
If another process claimed resource:
– Coordinator does not reply until release
– Maintain queue: service requests in FIFO order

P0

C

P1

P2

R Request Queue
P2

11March 1, 2021 CS 417 © 2021 Paul Krzyzanowski

R in use by: P1

release(R)

grant(R)R in use by: P2

Centralized algorithm
Benefits

• Fair: All requests processed in order

• Easy to implement, understand, verify

• Processes do not need to know group members – just the coordinator

• Efficiency: 2 messages to enter, 1 message to exit

Problems

• Process cannot distinguish being blocked from a dead coordinator – single
point of failure

• Centralized server can be a bottleneck

March 1, 2021 CS 417 © 2021 Paul Krzyzanowski 12

Token Ring algorithm
Assume known group of processes
– Some ordering can be imposed on group (unique process IDs)
– Construct logical ring in software
– Process communicates with its neighbor

P0

P1

P2

P3

P4

P5

13March 1, 2021 CS 417 © 2021 Paul Krzyzanowski

Token Ring algorithm
• Initialization
– Process 0 creates a token for resource R

• Token circulates around ring from Pi to P(i+1)mod N

• When process acquires token
– Checks to see if it needs to enter critical section
– If no, send ring to neighbor
– If yes, access resource
• Hold token until done

P0

P1

P2

P3

P4

P5

token(R)

14March 1, 2021 CS 417 © 2021 Paul Krzyzanowski

Token Ring algorithm

P0

P1

P2

P3

P4

P5

Your turn to access resource R

15March 1, 2021 CS 417 © 2021 Paul Krzyzanowski

Token Ring algorithm

P0

P1

P2

P3

P4

P5
Your turn to access
resource R

16March 1, 2021 CS 417 © 2021 Paul Krzyzanowski

Token Ring algorithm

P0

P1

P2

P3

P4

P5

Your turn to access
resource R

17March 1, 2021 CS 417 © 2021 Paul Krzyzanowski

Token Ring algorithm

P0

P1

P2

P3

P4

P5

Your turn to access resource R

18March 1, 2021 CS 417 © 2021 Paul Krzyzanowski

Token Ring algorithm

P0

P1

P2

P3

P4

P5

Your turn to access
resource R

19March 1, 2021 CS 417 © 2021 Paul Krzyzanowski

Token Ring algorithm

P0

P1

P2

P3

P4

P5
Your turn to access

resource R

20March 1, 2021 CS 417 © 2021 Paul Krzyzanowski

Token Ring algorithm

P0

P1

P2

P3

P4

P5

Your turn to access resource R

21March 1, 2021 CS 417 © 2021 Paul Krzyzanowski

Token Ring algorithm

P0

P1

P2

P3

P4

P5
Your turn to access
resource R

22March 1, 2021 CS 417 © 2021 Paul Krzyzanowski

Token Ring algorithm summary
• Safety: Only one process at a time has token
– Mutual exclusion guaranteed

• Liveness: Order well-defined (but not necessarily first-come, first-served)
– Starvation cannot occur
– Lack of FCFS ordering may be undesirable sometimes

• Delay:
– Request = 0…N-1 messages
– Release = 1 message

March 1, 2021 CS 417 © 2021 Paul Krzyzanowski 23

Token Ring algorithm summary
• Downsides/Problems
– Constant activity
– Token loss (e.g., process died)
• It will have to be regenerated
• Detecting loss may be a problem – is the token lost or in just use by someone?

– Process loss: what if you can't talk to your neighbor?

March 1, 2021 CS 417 © 2021 Paul Krzyzanowski 24

Lamport’s Mutual Exclusion
Distributed algorithm using reliable multicast and logical clocks

• Messages are sent reliably and in single-source FIFO order
– Each message is time stamped with totally ordered Lamport timestamps
• Ensures that each timestamp is unique
• Every node can make the same decision by comparing timestamps

• Each process maintains request queue
– Queue contains mutual exclusion requests
– Queues are sorted by message timestamps

March 1, 2021 CS 417 © 2021 Paul Krzyzanowski 25

1. Request a Resource
Request a critical section:
• Process Pi sends Request(R, i, Ti) to all nodes

It also places the same request onto its own queue

• When a process Pj receives a request:
– It returns a timestamped Reply(Tj)
– Places the request on its request queue

Every process will have an identical queue
– Same contents in the same order

Lamport time

26

Process Time stamp
P4 1021
P8 1022
P1 3944
P6 8201
P12 9638

Sample request queue for R
Identical at each process

March 1, 2021 CS 417 © 2021 Paul Krzyzanowski

2. Use the Resource
Enter a critical section (accessing resource):
• Pi has received Reply messages from every process

Pj where Tj > Ti

• Pi’s request has the earliest timestamp
in its queue

If your request is at the head of the queue
AND you received Replies for that request
… then you can access the critical section

27

Process Time stamp
P4 1021
P8 1022
P1 3944
P6 8201
P12 9638

Sample request queue for R
Identical at each process

March 1, 2021 CS 417 © 2021 Paul Krzyzanowski

3. Release the resource
Release a critical section:
• Process Pi removes its request from its queue

• Sends Release(i, Ti) to all nodes

• Each process now checks if its request is the earliest in its queue

• If so, that process now has the critical section

28March 1, 2021 CS 417 © 2021 Paul Krzyzanowski

Assessment: Lamport’s Mutual Exclusion
• Safety: Replicated queues – same process on top

• Liveness: Sorted queue & Lamport timestamps ensure earlier processes go first

• Delay/Bandwidth:
– Request = 2(N-1) messages: (N-1) Request msgs + (N-1) Reply msgs
– Release = (N-1) Release msgs

• Problems
– N points of failure
– A lot of messaging traffic
• Requests & releases are sent to the entire group

Not great … but demonstrates that a fully distributed algorithm is possible

March 1, 2021 CS 417 © 2021 Paul Krzyzanowski 29

Ricart & Agrawala algorithm
Another contention-based distributed algorithm

using reliable multicast and logical clocks

When a process wants to enter critical section:
1. Compose a Request(R, i, Ti) message containing:
• R: Name of resource
• i: Process Identifier (machine ID, process ID)
• Ti: Timestamp (totally-ordered Lamport)

2. Reliably multicast request to all processes in group

3. Wait until everyone gives permission (sends a Reply)

4. Enter critical section / use resource

March 1, 2021 CS 417 © 2021 Paul Krzyzanowski 30

Ricart & Agrawala algorithm
When process receives a request:
– If receiver not interested: send Reply to sender
– If receiver is in critical section: do not reply; add request to queue
– If receiver just sent a request as well: (potential race condition)
• Compare timestamps on received & sent messages: earliest timestamp wins
• If receiver is the loser: send Reply
• If receiver is the winner: do not reply – queue the request

• When done with critical section
– Send Reply to all queued requests

31March 1, 2021 CS 417 © 2021 Paul Krzyzanowski

Assessment: Ricart & Agrawala Mutual Exclusion
• Safety: Two competing processes will not send a REPLY to each other
– Timestamps in the requests are unique – one will be earlier than the other

• Liveness: Ordered by Lamport timestamp if there is contention

• Delay/Bandwidth:
– Request = 2(N-1) messages: (N-1) Request msgs + (N-1) Reply msgs
– Release = 0 … (N-1) Reply msgs to queued requests

• Problems
– N points of failure
– A lot of messaging traffic: requests & releases are sent to the entire group

March 1, 2021 CS 417 © 2021 Paul Krzyzanowski 32

Lamport vs. Ricart & Agrawala
Lamport
– Everyone replies … always – no hold-back
– 3(N-1) messages
• Request – Reply – Release

– Process decides to go based on whether its request is the earliest in its queue

Ricart & Agrawala
– If you are in the critical section (or won a tie)
• Don’t respond with a Reply until you are done with the critical section

– 2(N-1) messages
• Request – ACK

– Process decides to go if it gets ACKs from everyone

March 1, 2021 CS 417 © 2021 Paul Krzyzanowski 33

Other distributed mutex algorithms
• Suzuki-Kasami
– Adds a token to Ricart & Agrawala
– Improves performance to (N-1) requests and 1 reply

• Maekawa
– Partitions the group – each subgroup has at least one process in common with

another subgroup
– Performance improved to 3 𝑁 … 6 𝑁 messsages

• Many more…

March 1, 2021 CS 417 © 2021 Paul Krzyzanowski 34

The End

March 1, 2021 35CS 417 © 2021 Paul Krzyzanowski

