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Process Synchronization
Techniques to coordinate execution among processes
– One process may have to wait for another
– Shared resource (critical section) may require exclusive access

Mutual exclusion
– Examples
• Update a fields in database tables
• Modify a file
• Modify file contents that are replicated on multiple servers

– Easy to handle if the entire request is atomic
• Contained in a single message; server can manage mutual exclusion

– Needs to be coordinated if the request comprises multiple messages or spans multiple 
systems
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Centralized Systems
Achieve mutual exclusion via:
– Test & set in hardware
– Semaphores
– Messages (inter-process)
– Condition variables
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Distributed Mutual Exclusion
Goal:
Create an algorithm to allow a process to request and obtain exclusive access to 
a resource that is available on the network

Required properties:
Safety: At any instant, only one process may hold the resource

Liveness: The algorithm should make progress; processes should not wait forever for 
messages that will never arrive

Also desired:

Fairness: Each process gets a fair chance to hold the resource: bounded wait time & in-
order processing
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Assumptions
Resource identification
– Assume there is agreement on how a resource is identified
• Pass the identifier with requests
• e.g., lock("printer"), lock("table:employees"), lock("table:employees;row:15"), lock("shared_file.txt")
…and every process can identify itself uniquely

– We’ll just use request(R) to request exclusive access to resource R

• Process identification
– Every process has a unique ID (e.g., address.process_id)

• Reliable communication
– Network messages are reliable (may require retransmission of lost/corrupted messages)

• Live processes
– The processes in the system do not die
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Categories of mutual exclusion algorithms
• Centralized
– A process can access a resource because a central coordinator allowed it to 

do so

• Token-based
– A process can access a resource if it is holding a token permitting it to do so

• Contention-based
– A process can access a resource via distributed agreement
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Centralized algorithm
• Mimic single processor system

• One process elected as coordinator

P

Crequest(R)

grant(R)

1. Request resource
2. Wait for response
3. Receive grant
4. access resource
5. Release resource

release(R)
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Centralized algorithm
If another process claimed resource:
– Coordinator does not reply until release
– Maintain queue: service requests in FIFO order

P0

C

request(R)

grant(R)

P1request(R)

R Request Queue
P1
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Centralized algorithm
If another process claimed resource:
– Coordinator does not reply until release
– Maintain queue: service requests in FIFO order

P0

C

P1

P2

R Request Queue
P1

request(R)

P2
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R in use by: P0



Centralized algorithm
If another process claimed resource:
– Coordinator does not reply until release
– Maintain queue: service requests in FIFO order

P0

C

release(R)

P1

P2

R Request Queue
P1

P2
grant(R)
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R in use by: P0R in use by: P1

P2



Centralized algorithm
If another process claimed resource:
– Coordinator does not reply until release
– Maintain queue: service requests in FIFO order

P0

C

P1

P2

R Request Queue
P2
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R in use by: P1

release(R)

grant(R)R in use by: P2



Centralized algorithm
Benefits

• Fair: All requests processed in order

• Easy to implement, understand, verify

• Processes do not need to know group members – just the coordinator

• Efficiency: 2 messages to enter, 1 message to exit

Problems

• Process cannot distinguish being blocked from a dead coordinator – single 
point of failure

• Centralized server can be a bottleneck
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Token Ring algorithm
Assume known group of processes
– Some ordering can be imposed on group (unique process IDs)
– Construct logical ring in software
– Process communicates with its neighbor

P0

P1

P2

P3

P4

P5
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Token Ring algorithm
• Initialization
– Process 0 creates a token for resource R

• Token circulates around ring from Pi to P(i+1)mod N

• When process acquires token
– Checks to see if it needs to enter critical section
– If no, send ring to neighbor
– If yes, access resource
• Hold token until done

P0

P1

P2

P3

P4

P5

token(R)
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Token Ring algorithm

P0

P1

P2

P3

P4

P5

Your turn to access resource R
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Token Ring algorithm

P0

P1

P2

P3

P4

P5
Your turn to access 
resource R
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Token Ring algorithm

P0

P1

P2

P3

P4

P5

Your turn to access 
resource R
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Token Ring algorithm

P0

P1

P2

P3

P4

P5

Your turn to access resource R
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Token Ring algorithm

P0

P1

P2

P3

P4

P5

Your turn to access
resource R
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Token Ring algorithm

P0

P1

P2

P3

P4

P5
Your turn to access

resource R
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Token Ring algorithm

P0

P1

P2

P3

P4

P5

Your turn to access resource R

21March 1, 2021 CS 417 © 2021 Paul Krzyzanowski



Token Ring algorithm

P0

P1

P2

P3

P4

P5
Your turn to access
resource R
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Token Ring algorithm summary
• Safety: Only one process at a time has token
– Mutual exclusion guaranteed

• Liveness: Order well-defined (but not necessarily first-come, first-served)
– Starvation cannot occur
– Lack of FCFS ordering may be undesirable sometimes

• Delay:
– Request = 0…N-1 messages
– Release = 1 message
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Token Ring algorithm summary
• Downsides/Problems
– Constant activity
– Token loss (e.g., process died)
• It will have to be regenerated
• Detecting loss may be a problem – is the token lost or in just use by someone?

– Process loss: what if you can't talk to your neighbor?
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Lamport’s Mutual Exclusion
Distributed algorithm using reliable multicast and logical clocks

• Messages are sent reliably and in single-source FIFO order
– Each message is time stamped with totally ordered Lamport timestamps
• Ensures that each timestamp is unique
• Every node can make the same decision by comparing timestamps

• Each process maintains request queue
– Queue contains mutual exclusion requests
– Queues are sorted by message timestamps
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1. Request a Resource
Request a critical section:
• Process Pi sends Request(R, i, Ti) to all nodes

It also places the same request onto its own queue

• When a process Pj receives a request:
– It returns a timestamped Reply(Tj)
– Places the request on its request queue

Every process will have an identical queue
– Same contents in the same order

Lamport time
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Process Time stamp
P4 1021
P8 1022
P1 3944
P6 8201
P12 9638

Sample request queue for R
Identical at each process
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2. Use the Resource
Enter a critical section (accessing resource):
• Pi has received Reply messages from every process 

Pj where Tj > Ti

• Pi’s request has the earliest timestamp 
in its queue

If your request is at the head of the queue
AND you received Replies for that request
… then you can access the critical section
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Process Time stamp
P4 1021
P8 1022
P1 3944
P6 8201
P12 9638

Sample request queue for R
Identical at each process
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3. Release the resource
Release a critical section:
• Process Pi removes its request from its queue

• Sends Release(i, Ti) to all nodes

• Each process now checks if its request is the earliest in its queue

• If so, that process now has the critical section
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Assessment: Lamport’s Mutual Exclusion
• Safety: Replicated queues – same process on top

• Liveness: Sorted queue & Lamport timestamps ensure earlier processes go first

• Delay/Bandwidth:
– Request = 2(N-1) messages: (N-1) Request msgs + (N-1) Reply msgs
– Release = (N-1) Release msgs

• Problems
– N points of failure
– A lot of messaging traffic 
• Requests & releases are sent to the entire group

Not great … but demonstrates that a fully distributed algorithm is possible
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Ricart & Agrawala algorithm
Another contention-based distributed algorithm

using reliable multicast and logical clocks

When a process wants to enter critical section:
1. Compose a Request(R, i, Ti) message containing:
• R: Name of resource
• i: Process Identifier (machine ID, process ID)
• Ti: Timestamp (totally-ordered Lamport)

2. Reliably multicast request to all processes in group

3. Wait until everyone gives permission (sends a Reply)

4. Enter critical section / use resource
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Ricart & Agrawala algorithm
When process receives a request:
– If receiver not interested: send Reply to sender
– If receiver is in critical section: do not reply; add request to queue
– If receiver just sent a request as well: (potential race condition)
• Compare timestamps on received & sent messages: earliest timestamp wins
• If receiver is the loser: send Reply
• If receiver is the winner: do not reply – queue the request

• When done with critical section
– Send Reply to all queued requests
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Assessment: Ricart & Agrawala Mutual Exclusion
• Safety: Two competing processes will not send a REPLY to each other
– Timestamps in the requests are unique – one will be earlier than the other 

• Liveness: Ordered by Lamport timestamp if there is contention

• Delay/Bandwidth:
– Request = 2(N-1) messages: (N-1) Request msgs + (N-1) Reply msgs
– Release = 0 … (N-1) Reply msgs to queued requests

• Problems
– N points of failure
– A lot of messaging traffic: requests & releases are sent to the entire group
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Lamport vs. Ricart & Agrawala
Lamport
– Everyone replies  … always – no hold-back
– 3(N-1) messages
• Request – Reply – Release

– Process decides to go based on whether its request is the earliest in its queue

Ricart & Agrawala
– If you are in the critical section (or won a tie)
• Don’t respond with a Reply until you are done with the critical section

– 2(N-1) messages
• Request – ACK

– Process decides to go if it gets ACKs from everyone
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Other distributed mutex algorithms
• Suzuki-Kasami
– Adds a token to Ricart & Agrawala
– Improves performance to (N-1) requests and 1 reply

• Maekawa
– Partitions the group – each subgroup has at least one process in common with 

another subgroup
– Performance improved to 3 𝑁 … 6 𝑁 messsages

• Many more…
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The End
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