
CS 417 – DISTRIBUTED SYSTEMS

Paul Krzyzanowski

Week 5: Part 3 
Quorum-Based Consensus: Raft

© 2021 Paul Krzyzanowski. No part of this 
content, may be reproduced or reposted in 
whole or in part in any manner without the 
permission of the copyright owner.



Consensus Goal
Allow a group of processes to agree on a result

• All processes must agree on the same value

• The value must be one that was submitted by at least one process
(the consensus algorithm cannot just make up a value)

CS 417 © 2021 Paul Krzyzanowski 2



We saw versions of this
• Mutual exclusion
– Agree on who gets a resource or who becomes a coordinator

• Election algorithms
– Agree on who is in charge

• Other uses of consensus:
– Synchronize state to manage replicas: make sure every group member agrees on the 

message ordering of events
– Manage group membership
– Agree on distributed transaction commit

• General consensus problem:
– How do we get unanimous agreement on a given value?

value = sequence number of a message, key=value, operation, whatever…

CS 417 © 2021 Paul Krzyzanowski 3



Achieving consensus seems easy!

4

client Data store
value = "x=abc"

• One request at a time
• Server that never dies

CS 417 © 2021 Paul Krzyzanowski



Dealing with failure
• FLP Impossibility result
– Impossibility of distributed consensus with one faulty process by Fischer, 

Lynch and Patterson
– Consensus protocols with asynchronous communication & faulty processes
"every protocol for this problem has the possibility of nontermination, even 
with only one faulty process"

• It really means we cannot achieve consensus in bounded time
– We can with partially synchronous networks
– Either wait long enough for messaging traffic so the protocol can complete or 

terminate

CS 417 © 2021 Paul Krzyzanowski 5

References:
the-paper-trail: https://www.the-paper-trail.org/post/2008-08-13-a-brief-tour-of-flp-impossibility/
original paper: https://dl.acm.org/doi/10.1145/3149.214121



Servers might die – let's add replicas

6

client Data storevalue = "x=abc"

One request at a time

Data store

Data store

value = "x=abc"

value = "x=abc"

CS 417 © 2021 Paul Krzyzanowski



Reading from replicas is easy

7

Data store

Data store

Data store

Client

x=abc

x=abc

x=def

We rely on a quorum (majority) to read successfully

No quorum = failed read!

CS 417 © 2021 Paul Krzyzanowski



What about concurrent updates?

8

x: def

value = "x=abc"

We risk inconsistent updates

x: abc

x: def

value = "x=abc"

Client 1

Client 2

value = "x=abc"

value = "x=def"

CS 417 © 2021 Paul Krzyzanowski

value = "x=def"

value = "x=def"



What about concurrent updates?

9

Data store
value = "x=abc"

• Coordinator (or sequence # generator) processes requests one at a time
• But now we have a single point of failure!
• We need something safer

Data store

Data store

value = "x=abc"

value = "x=abc"
Client 1

Client 2

coordinator

value = "x=abc"

value = "x=def"

CS 417 © 2021 Paul Krzyzanowski



Consensus algorithm goal
Goal: agree on one result among a group of participants

Create a fault-tolerant consensus algorithm that does not block if a majority of processes 
are working

– Processors may fail (some may need stable storage)
– Messages may be lost, out of order, or duplicated
– If delivered, messages are not corrupted

10

Quorum: majority (>50%) agreement is the key part: If a majority 
of coins show heads, there is no way that a majority will show tails at 
the same time.

If members die and others come up, there will be one member in 
common with the old group that still holds the information.

CS 417 © 2021 Paul Krzyzanowski



Consensus requirements
• Validity
– Only proposed values may be selected

• Uniform agreement
– No two nodes may select different values

• Integrity
– A node can select only a single value

• Termination (Progress)
– Every node will eventually decide on a value

11CS 417 © 2021 Paul Krzyzanowski



CS 417 © 2021 Paul Krzyzanowski 12

Distributed Consensus Protocols: Paxos



Raft Distributed Consensus

13CS 417 © 2021 Paul Krzyzanowski



Goal: replicated state machines

Allow a collection of systems to stay in sync and withstand 
the failure of some members
• Systems are deterministic – if they receive the same input then they 

produce the same results

• Required for any system that has a single coordinator
– Examples: Google Chubby, Apache Zookeeper, Google File System, Hadoop 

Distributed File System, Google Pregel, Apache Spark, …

• Implement as a replicated log
– Log = list of commands processed by each server in sequence

14CS 417 © 2021 Paul Krzyzanowski



Consensus 
Module

State machine
(the program)

Log

Consensus algorithm goal
Keep the replicated log consistent
• A consensus module on a server receives commands from clients

• It propagates the commands to consensus modules on other systems to get everyone to 
agree on the the next log entry

• The entry is added to the log (queue) and a state machine on each server can then 
process the log data

15

Command 
(log entry)

Consensus 
Module

State machine
(the program)

Log

Command 
(log entry)

CS 417 © 2021 Paul Krzyzanowski



Raft environment

• Server group = set of replicas (replicated state machine)
– Typically a small odd number (5, 7)

• Clients send data to a leader

• The leader forwards the data to followers

• Each leader & follower stores a list of requests in a log

• Raft has two phases
1. Leader election
2. Log propagation

16

Follower

Follower

Follower

Follower

Clients Leader

CS 417 © 2021 Paul Krzyzanowski



Participant states
• Leader: handles all client requests
– There is only one leader at a time

• Candidate: used during leader election
– One leader will be selected from one or more candidates

• Follower: doesn’t talk to clients
– Responds to requests from leaders and candidates

17CS 417 © 2021 Paul Krzyzanowski



Raft RPCs
• The Raft protocol uses two RPCs

• RequestVotes
– Used during elections

• AppendEntries
– Used by leaders to
• Propagate log entries to replicas (followers)
• Send commit messages (inform that a majority of followers received the entry)
• Send heartbeat messages – a message with no log entry

18CS 417 © 2021 Paul Krzyzanowski



Terms
• Each term begins with an election

• Any requests from smaller term numbers are rejected

• If a participant discovers its term is smaller than another’s
– It updates its term number
– If the participant was a leader or candidate then it reverts to a follower state

19

Log propagation Election

Term N Term N+1 Term N+2

CS 417 © 2021 Paul Krzyzanowski



Leader Election
Everyone starts off as a follower and waits for messages from the leader

Leaders periodically send AppendEntries messages
• A leader must send a message to all followers at least every heartbeat interval
• These might contain no entries but act as a heartbeat

If a follower times out waiting for a heartbeat from a leader, it starts an election
• Follower changes its state to candidate
• Increments its term number
• Set a random election timeout 
• Votes for itself
• Sends RequestVote RPC messages to all other members
– Any receiving process will vote for this candidate if it has not voted yet in this term

CS 417 © 2021 Paul Krzyzanowski 20



Leader Election: Outcomes
Possible outcomes
1. Candidate receives votes from a majority of servers
– It becomes a leader and starts to send AppendEntries messages to others

2. Candidate receives an AppendEntries RPC
– That means someone else thinks they’re the leader – check the term # in the message
– If term # in message > candidate's term #

It accepts the server as the leader and becomes a follower
– If term # in message < candidate's term #

It rejects the RPC and remains a candidate

3. Election timeout is reached with no majority response
– Split vote: if more than one server becomes a candidate at the same time, there is a 

chance the vote may be split with no majority

CS 417 © 2021 Paul Krzyzanowski 21



Leader Election: Ranomized timeouts
If more than one server becomes a candidate at the same time, there is a 
chance the vote may be split with no majority
• We want to avoid this situation

• Raft uses randomized timeouts to ensure concurrent elections and split votes 
are rare

• Election timeouts chosen randomly (e.g., in the range 150-300ms)

• Usually, only one server will time out –
– winning the election and then sending heartbeats before others time out

• If multiple servers hold concurrent elections and we have a split vote
– They simply restart their elections: it’s highly unlikely that both will choose the same 

random election timeout

CS 417 © 2021 Paul Krzyzanowski 22



Log replication: leader to followers
• Commands from clients are sent only to the current leader
– Leader appends the request to its own log
• Log entry has a term # and an index # associated with it

– Sends an AppendEntries RPC to all the followers
• Retry until all followers acknowledge it 

• Each AppendEntries RPC request contains:
– Command to be run by each server
– Index to identify the position of the entry in the log (first is 1)
– Term number - identifies when the entry was added to the leader’s log
– Index and term # of previous log entry

23CS 417 © 2021 Paul Krzyzanowski



Log replication: followers
A follower receives an AppendEntries message

• If leader’s term < follower’s term
– Reject the message

• If the log does not contain an entry at the previous (index, term)
– Reject the message

• If the the log contains a conflicting entry (same index, different term)
– Delete that entry and all following entries from the log

• Add the data in the message to the log

24CS 417 © 2021 Paul Krzyzanowski



Log replication: execution
• When a log entry is accepted by the majority of servers, it is considered 

committed

• The leader can then execute the log entry & send a result to the client

• Each AppendEntries RPC request also contains a commit index
– Index of highest committed log entry

• When followers are told the entry is committed, they apply the log entry 
to their state machine

25CS 417 © 2021 Paul Krzyzanowski



Forcing consistency
• Leaders & followers may crash
– Causes logs (& knowledge of current term) to become inconsistent

• Leader tries to find the last index where its log matches that of the follower
– Leader tracks nextIndex for each follower

(index of next log entry that will be sent to that follower)
– If AppendEntries returns a rejection
• Leader decrements nextIndex for that follower
• Sends an AppendEntries RPC with the previous entry

– Eventually the leader will find an index entry that matches the follower’s

This technique means no special actions need to be taken to restore logs when a 
system restarts

CS 417 © 2021 Paul Krzyzanowski 26



The End

27CS 417 © 2021 Paul Krzyzanowski


