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Deadlock

Four conditions for deadlock

1. Mutual exclusion
2. Hold and wait
3. Non-preemption
4. Circular wait

© 2021 Paul Krzyzanowski 2



Resource R1 is allocated to process P1

Resource R1 is requested by process P2

This is called a Wait-For Graph (WFG)
Deadlock is present when the graph has cycles

Graphing resource allocation: Wait-For Graph
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Same graph – simplified notation



Wait-For Graph: Deadlock Example
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Circular dependency among four processes and four resources leads to deadlock

Same graph – simplified notation



Dealing with deadlock
Same conditions for distributed systems as centralized
Harder to detect, avoid, prevent
Strategies
1. Ignore

Do nothing. So easy & so tempting.
2. Detect

Allow the deadlock to occur, detect it, and then deal with it by aborting and restarting a transaction 
that causes deadlock.

3. Prevent
Make deadlock impossible by granting requests such that one of the conditions necessary for 
deadlock does not hold.

4. Avoid
Choose resource allocation so deadlock does not occur.
But the algorithm needs to know what resources will be used and when
à not feasible in most cases
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Deadlock detection
• Kill off a task when deadlock is detected
– That breaks the circular dependency

• It might not feel good to kill a process
– But transactions are designed to be abortable

• So just abort a transaction
– Data is restored to state before transaction began
– Transaction can restart at a later time
– Resource allocation in the system may be different then so the transaction 

may succeed
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Centralized deadlock detection
• Imitate the non-distributed algorithm through a coordinator

• Each system maintains a Wait-For Graph for its processes and 
resources

• A central coordinator maintains the combined graph for the entire 
system: the Global Wait-For Graph
– A message is sent to the coordinator each time an edge (resource 

hold/request) is added or deleted
– List of adds/deletes can be sent periodically
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Centralized deadlock detection
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Two events occur:
1. Process P2 releases resource T on system B
2. Process P1 asks system B for resource T

Two messages are sent to the coordinator:
Message 1 (from B): P2 releases T
Message 2 (from A): P1 waits for T

If message 2 arrives first, the coordinator
constructs a graph that has a cycle and hence
detects a deadlock

This is phantom deadlock

Centralized deadlock detection
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A phantom deadlock is known as a false deadlock
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Example: No Phantom Deadlock
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Phantom Deadlock Example
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release(T)Message 2 from A:

wait_for(T)

We detected deadlock because the coordinator received the messages out of order

DEADLOCK detected!

Message 2

Message 1

It really wasn’t deadlock 
since P2 released T

Too Late!



Avoiding Phantom Deadlock

Impose globally consistent (total) ordering on all processes

or

Have coordinator reliably ask each process whether it has 
any release messages
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Distributed deadlock detection
• Processes can request multiple resources at once
– Consequence: process may wait on multiple resources

• Some processes wait for local resources

• Some processes wait for resources on other machines

• Algorithm invoked when a process has to wait for a resource
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Distributed detection algorithm
Chandy-Misra-Haas algorithm

Edge Chasing

When requesting a resource, generate a probe message
– Send to all process(es) currently holding the needed resource
– Message contains three process IDs: { blocked_ID, my_ID, holder_ID }

1. Process that originated the message (blocked_ID)
2. Process sending (or forwarding) the message (my_ID)
3. Process to whom the message is being sent (holder_ID)
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Chandy-Misra-Haas algorithm
If a process receives a probe message:

• Check to see if it is waiting for any resources held by other processes

• For each process holding a resource it is waiting for:
– Update & forward a probe message: {blocked_ID, my_ID, holder_ID}
• Replace my_ID field by its own process ID
• Replace holder_ID field by the ID of the process it is waiting for
• Send messages to each process on which it is blocked

If a message goes all the way around and comes back to the original 
sender, a cycle exists
⇒ We have deadlock
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Chandy-Misra-Haas algorithm – edge chasing

• Process 0 needs a resource process 1 is holding

• That means process 0 will block on process 1
– Send initial message from P0 to P1: (0,0,1)
– P1 sends (0, 1, 2) to P2 ; P2 sends (0, 2, 3) to P3

• Message (0,8,0) returns back to sender
⇒ Cycle exists: we will have deadlock if P0 blocks on the resource
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Distributed deadlock prevention
Design the system so that deadlocks are structurally impossible
Disallow at least one of the four conditions for deadlock:
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• Allow a resource to be held (used) by more than 
one process at a time

• Not practical if an object gets modified.
• This can violate the ACID properties of a 

transaction

Mutual exclusion

• Implies that a process gets all its resources at 
once

• Not practical to disallow this – we don’t know 
what resources a process will use

Hold and wait

• Essentially gives up mutual exclusion
• This can also violate the ACID properties
• We can use optimistic concurrency control 

algorithms and check for conflicts at commit 
time and roll back if needed

Non-preemption

• Ensure that a cycle of waiting on resources does 
not occur

Circular wait



Distributed deadlock prevention
Deny circular wait
• Assign a unique timestamp to each transaction

• Ensure that the Global Wait-For Graph can only proceed from 
young to old or from old to young
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Deadlock prevention: timestamp ordering
When a process is about to block waiting for a resource used by 
another, check to see which has a larger timestamp (which is older)

• Allow the wait only if the waiting process has a lower (older) 
timestamp than the process waited for

• Timestamps in a resource allocation graph always must increase, so 
cycles are impossible.

• Alternatively: allow processes to wait only if the waiting process has a 
higher (younger) timestamp than the process waiting for.

© 2021 Paul Krzyzanowski 19



Wait-die algorithm
• Old process wants resource held by a 

younger process
– Old process waits

• Young process wants resource held by 
older process
– Young process kills itself
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Only permit older processes to wait on 
resources held by younger processes.
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Wound-wait algorithm
• Kill the resource owner if needed

• Old process wants resource held by a 
younger process
– Old process kills the younger process

• Young process wants resource held by 
older process
– Young process waits
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Only permit younger processes to wait on 
resources held by older processes.
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The End
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