
CS 417 – DISTRIBUTED SYSTEMS

Paul Krzyzanowski

Week 10: Distributed Transactions
Part 4: Deadlock

© 2021 Paul Krzyzanowski. No part of this 
content, may be reproduced or reposted in 
whole or in part in any manner without the 
permission of the copyright owner.



Deadlock

Four conditions for deadlock

1. Mutual exclusion
2. Hold and wait
3. Non-preemption
4. Circular wait

© 2021 Paul Krzyzanowski 2



Resource R1 is allocated to process P1

Resource R1 is requested by process P2

This is called a Wait-For Graph (WFG)
Deadlock is present when the graph has cycles

Graphing resource allocation: Wait-For Graph

R1 P2

R1P1
holds

wants

© 2021 Paul Krzyzanowski 3

P1 P2
R1

P2 wants R1, which is held by P1

P2
wantsR1P1

holds

P1 holds R1

P2 wants R1

Same graph – simplified notation



Wait-For Graph: Deadlock Example

© 2021 Paul Krzyzanowski 4

R2

R4

R1 R3

ho
ld

s
P1

P4

P2

P3

w
an

ts

wants holds

w
ants

holds

wantsholds

P1 P2

P4 P3

R2

R3R1

R4

Circular dependency among four processes and four resources leads to deadlock

Same graph – simplified notation



Dealing with deadlock
Same conditions for distributed systems as centralized
Harder to detect, avoid, prevent
Strategies
1. Ignore

Do nothing. So easy & so tempting.
2. Detect

Allow the deadlock to occur, detect it, and then deal with it by aborting and restarting a transaction 
that causes deadlock.

3. Prevent
Make deadlock impossible by granting requests such that one of the conditions necessary for 
deadlock does not hold.

4. Avoid
Choose resource allocation so deadlock does not occur.
But the algorithm needs to know what resources will be used and when
à not feasible in most cases

© 2021 Paul Krzyzanowski 5



Deadlock detection
• Kill off a task when deadlock is detected
– That breaks the circular dependency

• It might not feel good to kill a process
– But transactions are designed to be abortable

• So just abort a transaction
– Data is restored to state before transaction began
– Transaction can restart at a later time
– Resource allocation in the system may be different then so the transaction 

may succeed

© 2021 Paul Krzyzanowski 6



Centralized deadlock detection
• Imitate the non-distributed algorithm through a coordinator

• Each system maintains a Wait-For Graph for its processes and 
resources

• A central coordinator maintains the combined graph for the entire 
system: the Global Wait-For Graph
– A message is sent to the coordinator each time an edge (resource 

hold/request) is added or deleted
– List of adds/deletes can be sent periodically

© 2021 Paul Krzyzanowski 7



Centralized deadlock detection

SP0

P1

R
w
an

ts

holds

P2

T

SP0

P1

R
w
an

ts

holds

S P2

T

Local Wait-For 
Graph on A

Global Wait-For Graph

Local Wait-For 
Graph on B

© 2021 Paul Krzyzanowski 8



Two events occur:
1. Process P2 releases resource T on system B
2. Process P1 asks system B for resource T

Two messages are sent to the coordinator:
Message 1 (from B): P2 releases T
Message 2 (from A): P1 waits for T

If message 2 arrives first, the coordinator
constructs a graph that has a cycle and hence
detects a deadlock

This is phantom deadlock

Centralized deadlock detection

© 2021 Paul Krzyzanowski 9

A phantom deadlock is known as a false deadlock

P2

T

SP0

P1

R

w
an

ts

holds

released

requested



Example: No Phantom Deadlock

10© 2021 Paul Krzyzanowski

P2

T

SP0

P1

R

w
an

ts

holds

No deadlock

P2

T

SP0

P1

R

w
an

ts

holds
P2

T

SP0

P1

R

w
an

ts

holds

All good: no deadlock 
detected!

Message 1

Message 2

Message 1 from B:
release(T)

Message 2 from A:
wait_for(T)



Phantom Deadlock Example

11© 2021 Paul Krzyzanowski

P2

T

SP0

P1

R

w
an

ts

holds

No deadlock

P2

T

SP0

P1

R

w
an

ts

holds
P2

T

SP0

P1

R

w
an

ts

holds

Message 2

Message 1 from B:
release(T)Message 2 from A:

wait_for(T)

We detected deadlock because the coordinator received the messages out of order

DEADLOCK detected!

Message 2

Message 1

It really wasn’t deadlock 
since P2 released T

Too Late!



Avoiding Phantom Deadlock

Impose globally consistent (total) ordering on all processes

or

Have coordinator reliably ask each process whether it has 
any release messages

© 2021 Paul Krzyzanowski 12



Distributed deadlock detection
• Processes can request multiple resources at once
– Consequence: process may wait on multiple resources

• Some processes wait for local resources

• Some processes wait for resources on other machines

• Algorithm invoked when a process has to wait for a resource

© 2021 Paul Krzyzanowski 13



Distributed detection algorithm
Chandy-Misra-Haas algorithm

Edge Chasing

When requesting a resource, generate a probe message
– Send to all process(es) currently holding the needed resource
– Message contains three process IDs: { blocked_ID, my_ID, holder_ID }

1. Process that originated the message (blocked_ID)
2. Process sending (or forwarding) the message (my_ID)
3. Process to whom the message is being sent (holder_ID)

© 2021 Paul Krzyzanowski 14



Chandy-Misra-Haas algorithm
If a process receives a probe message:

• Check to see if it is waiting for any resources held by other processes

• For each process holding a resource it is waiting for:
– Update & forward a probe message: {blocked_ID, my_ID, holder_ID}
• Replace my_ID field by its own process ID
• Replace holder_ID field by the ID of the process it is waiting for
• Send messages to each process on which it is blocked

If a message goes all the way around and comes back to the original 
sender, a cycle exists
⇒ We have deadlock

© 2021 Paul Krzyzanowski 15



Chandy-Misra-Haas algorithm – edge chasing

• Process 0 needs a resource process 1 is holding

• That means process 0 will block on process 1
– Send initial message from P0 to P1: (0,0,1)
– P1 sends (0, 1, 2) to P2 ; P2 sends (0, 2, 3) to P3

• Message (0,8,0) returns back to sender
⇒ Cycle exists: we will have deadlock if P0 blocks on the resource

© 2021 Paul Krzyzanowski 16

0 1 2
4

5

6

7

8

System A System B System C

(0,2,3)
(0,4,6)

(0,5,7)

(0,8,0)
(blocked ID, my ID, holder ID)

3
(0,1,2)(0,0,1) (0,3,4

) (0,6,8)

(0,3,5)



Distributed deadlock prevention
Design the system so that deadlocks are structurally impossible
Disallow at least one of the four conditions for deadlock:

© 2021 Paul Krzyzanowski 17

• Allow a resource to be held (used) by more than 
one process at a time

• Not practical if an object gets modified.
• This can violate the ACID properties of a 

transaction

Mutual exclusion

• Implies that a process gets all its resources at 
once

• Not practical to disallow this – we don’t know 
what resources a process will use

Hold and wait

• Essentially gives up mutual exclusion
• This can also violate the ACID properties
• We can use optimistic concurrency control 

algorithms and check for conflicts at commit 
time and roll back if needed

Non-preemption

• Ensure that a cycle of waiting on resources does 
not occur

Circular wait



Distributed deadlock prevention
Deny circular wait
• Assign a unique timestamp to each transaction

• Ensure that the Global Wait-For Graph can only proceed from 
young to old or from old to young

© 2021 Paul Krzyzanowski 18



Deadlock prevention: timestamp ordering
When a process is about to block waiting for a resource used by 
another, check to see which has a larger timestamp (which is older)

• Allow the wait only if the waiting process has a lower (older) 
timestamp than the process waited for

• Timestamps in a resource allocation graph always must increase, so 
cycles are impossible.

• Alternatively: allow processes to wait only if the waiting process has a 
higher (younger) timestamp than the process waiting for.

© 2021 Paul Krzyzanowski 19



Wait-die algorithm
• Old process wants resource held by a 

younger process
– Old process waits

• Young process wants resource held by 
older process
– Young process kills itself

old
process
TS=123

young
process
TS=311

young
process
TS=311

old
process
TS=123

waits

dies

wants
resource

holds
resource

wants
resource

holds
resource

20

Only permit older processes to wait on 
resources held by younger processes.

© 2021 Paul Krzyzanowski



Wound-wait algorithm
• Kill the resource owner if needed

• Old process wants resource held by a 
younger process
– Old process kills the younger process

• Young process wants resource held by 
older process
– Young process waits

old
process
TS=123

young
process
TS=311

young
process
TS=311

old
process
TS=123

kills young process

waits

wants
resource

holds
resource

wants
resource

holds
resource

21

Only permit younger processes to wait on 
resources held by older processes.

© 2021 Paul Krzyzanowski



The End

22© 2021 Paul Krzyzanowski


