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Integrity: Goals

Use cryptographic techniques to detect that data has not been modified

* Integrity mechanisms can help in
— Detecting data corruption
— Malicious data modification
— Proving ownership of data
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Message Integrity

How do we detect that a message has been tampered?
* A cryptographic hash acts as a checksum

A hash is a small, fixed amount of information that lets us have
confidence that the data used to create the hash was not modified

» Associate a hash with a message
— we’re not encrypting the message
— we’re concerned with integrity, not confidentiality

Message M hash(M)
* |f two messages hash to different values, we know the messages are different
HM) = HIM’)
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Message Integrity

How do we detect that a message has been tampered?
* A cryptographic hash acts as a checksum

» Associate a hash with a message
— we’re not encrypting the message
— we’re concerned with integrity, not confidentiality

* |f two messages hash to different values, we know the messages are different
HM) = HIM’)

A hash is a small, fixed amount of information that lets us have
confidence that the data used to create the hash was not modified

CS 417 © 2021 Paul Krzyzanowski 4



Cryptographic hash functions

Properties Also called digests or

— Arbitrary length input — fixed-length output fingerprints

— Deterministic: you always get the same hash for the same message

— One-way function (pre-image resistance, or hiding)
» Given H, it should be difficult to find M such that H=hash(M)

— Collision resistant

* Infeasible to find any two different strings that hash to the same value:
Find M, M’such that hash(M) = hash(M’)

— Output should not give any information about any of the input
 Like cryptographic algorithms, relies on diffusion

— Efficient
+ Computing a hash function should be computationally efficient
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Hash functions are the basis of integrity

* Not encryption

» Can help us to detect:

— Masquerading:
* Insertion of message from a fraudulent source

— Content modification:
+ Changing the content of a message

— Sequence modification:
* Inserting, deleting, or rearranging parts of a message

— Replay attacks:
* Replaying valid sessions
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Some Popular Hash Functions

MD5 - 128 bits
+ Linux passwords used to use this
* Rarely used now since weaknesses were found
SHA-1 ° 160 bits — was widely used: checksum in Git & torrents
» Google demonstrated a collision attack in Feb 2017
... Google had to run >9 quintillion SHA-1 computations to complete the attack
... but already being phased out since weaknesses were found earlier
» Used for message integrity in GitHub
SHA-2 Believed to be secure
» Designed by the NSA; published by NIST
» Variations: SHA-224, SHA-256, SHA-384, SHA-512
 Linux passwords use SHA-512
 Bitcoin uses SHA-256
SHA-3 Believed to be secure
+ 256 & 512 bit
Blowfish « Used for password hashing in OpenBSD <+
Derived from ciphers
3DES . Linux passwords used to use this
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Tamperproof Integrity:
Message Authentication Codes and
Digital Signatures



Message Integrity: MACs

* We rely on hashes to assert the integrity of messages

- An attacker can create a new message M’ & a new hash
and replace H(M) with H(M’)

"Hello, Jib!" - "Hello, Jab!"

Hash=a8e02bl... — Hash=4d77eal...

* So, let’s create a checksum that relies on a key for validation:
Message Authentication Code (MAC) = hash(M, key)
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Message Authentication Codes (MAC)

Hash of message and a symmetric key:
An intruder will not be able to replace the hash value

— You need to have the key and the message to recreate the hash

MACs provide message integrity
* The hash assures us that the original message has not been modified

* The encryption of the hash assures us that an attacker could not have re-
created the hash

CS 417 © 2021 Paul Krzyzanowski 10



Digital Signatures

Create a hash that anyone can verify but only the owner can create:
Hash of message encrypted with the owner’s private key

* Alice encrypts the hash with her private key

« Bob validates by decrypting it with her public key &
comparing with a hash of the message

Digital signatures add non-repudiation

* Only Alice could have created the signature because
only Alice has her private key

CS 417 © 2021 Paul Krzyzanowski 11



Digital Signature Primitives

1. Key generation: { signing_key, verification_key } := gen_keys(key_size)
signing_key = private_key, k
verification_key = public_key, K

2. Signing: signature := sign(message, private_key)
signature := sign(message, private_key)
= signature := E,(hash(message))

The signature uses a hash(message) instead of the message
« We’d like the signature to be a small, fixed size

* We are not hiding the contents of the message

* We trust hashes to be collision-free

3. Validation: verify(verification_key, message, signature)
Dg(signature) £ hash(message)
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Digital signatures

Alice Bob

H(P)

> =1

Alice generates a hash of the message, H(P)
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Digital signatures: public key cryptography

Alice Bob

Alice encrypts the hash with her private key
This is her signature.
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Using Digital Signatures

modification?

Alice ‘ l Bob
=| HP > 1=
= P = l =
1S=Ea<H(P» >
YA '

Alice sends Bob the message & the encrypted hash
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Using Digital Signatures

modification?

Alice ‘ l Bob
— > |=]|| HP
= HP) - = l = (P) =]
— 1S=Ea<H(P» > | | Da(S)
a——1=]
A

1. Bob decrypts the hash using Alice’s public key
2. Bob computes the hash of the message sent by Alice
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Using Digital Signatures

Alice moTificatilon? Bob
=| HP) = l > I=(1LHE) =]
— | S=ExHeP) > % 0A8) ey

If the hashes match, the signature is valid
= the encrypted hash must have been generated by Alice
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Digital signatures & non-repudiation

* Digital signatures provide non-repudiation

— Only Alice could have created the signature because only Alice has her
private key

* Proof of integrity
— The hash assures us that the original message has not been modified

— The encryption of the hash assures us that an attacker could not have
re-created the hash
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Digital signatures: multiple signers

Alice Bob Charles
== == |F"
— S=E,(HP)—> |=—'| p,(s S (—

1 AORES 777> DA(S)
7 lseEb(H(P» — Dg(S))
A
Charles:

» Generates a hash of the message, H(P)

» Decrypts Alice’s signature with Alice’s public key
- Validates the signature: DA(S) = H(P)

« Decrypts Bob’s signature with Bob’s public key
- Validates the signature: Dg(S) = H(P)
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Covert AND authenticated messaging

If we want to keep the message secret
— combine encryption with a digital signature

Use a session key:
— Pick a random key, K, to encrypt the message with a symmetric algorithm
— Encrypt K with the public key of each recipient

— For signing, encrypt the hash of the message with sender’s private key
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Covert and authenticated messaging

Alice

-«
=
=

Alice generates a digital signature by
encrypting the message with her private key
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Covert and authenticated messaging

Alice

-«
=
=

I
P

Alice picks a random key, K, and encrypts the message V/
with it using a symmetric cipher
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Covert and authenticated messaging

Alice

= 7
—| C=E«M) %
L Hv)
[=] g 777
S=E,(H(M))
K 277
| C1=EB(K)
> % for Charles
Co=Ec(K)

Alice encrypts the session key for each
recipient of this message using their public keys
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Covert and authenticated messaging

Alice Bob
= 7
— > / ~~~~~~ Sender: Alice
— é \"“\\\Message:
lH(M) T M / Bob
=] N7/ |
S=E,(HM) > Signature: \
a
. » KeyforBob: K Charles
K > % T Key for Charl K
| C1_EB(K) //:, ey for Charles
Co=Ec(K)

The aggregate message is sent to Bob & Charles
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The End
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