CS 417 - DISTRIBUTED SYSTEMS

Week 12: Security in Distributed Systems
Part 2: Data Integrity

© 2021 Paul Krzyzanowski. No part of this
content, may be reproduced or reposted in

PaUI Krzyzan OWS kl whole or in part in any manner without the

permission of the copyright owner.

Integrity: Goals

Use cryptographic techniques to detect that data has not been modified

* Integrity mechanisms can help in
— Detecting data corruption
— Malicious data modification
— Proving ownership of data

CS 417 © 2021 Paul Krzyzanowski 2

Message Integrity

How do we detect that a message has been tampered?
* A cryptographic hash acts as a checksum

A hash is a small, fixed amount of information that lets us have
confidence that the data used to create the hash was not modified

» Associate a hash with a message
— we’re not encrypting the message
— we’re concerned with integrity, not confidentiality

Message M hash(M)
* |f two messages hash to different values, we know the messages are different
HM) = HIM’)

CS 417 © 2021 Paul Krzyzanowski 3

Message Integrity

How do we detect that a message has been tampered?
* A cryptographic hash acts as a checksum

» Associate a hash with a message
— we’re not encrypting the message
— we’re concerned with integrity, not confidentiality

* |f two messages hash to different values, we know the messages are different
HM) = HIM’)

A hash is a small, fixed amount of information that lets us have
confidence that the data used to create the hash was not modified

CS 417 © 2021 Paul Krzyzanowski 4

Cryptographic hash functions

Properties Also called digests or

— Arbitrary length input — fixed-length output fingerprints

— Deterministic: you always get the same hash for the same message

— One-way function (pre-image resistance, or hiding)
» Given H, it should be difficult to find M such that H=hash(M)

— Collision resistant

* Infeasible to find any two different strings that hash to the same value:
Find M, M’such that hash(M) = hash(M’)

— Output should not give any information about any of the input
 Like cryptographic algorithms, relies on diffusion

— Efficient
+ Computing a hash function should be computationally efficient

CS 417 © 2021 Paul Krzyzanowski 5

Hash functions are the basis of integrity

* Not encryption

» Can help us to detect:

— Masquerading:
* Insertion of message from a fraudulent source

— Content modification:
+ Changing the content of a message

— Sequence modification:
* Inserting, deleting, or rearranging parts of a message

— Replay attacks:
* Replaying valid sessions

CS 417 © 2021 Paul Krzyzanowski 6

Some Popular Hash Functions

MD5 - 128 bits
+ Linux passwords used to use this
* Rarely used now since weaknesses were found
SHA-1 ° 160 bits — was widely used: checksum in Git & torrents
» Google demonstrated a collision attack in Feb 2017
... Google had to run >9 quintillion SHA-1 computations to complete the attack
... but already being phased out since weaknesses were found earlier
» Used for message integrity in GitHub
SHA-2 Believed to be secure
» Designed by the NSA; published by NIST
» Variations: SHA-224, SHA-256, SHA-384, SHA-512
 Linux passwords use SHA-512
 Bitcoin uses SHA-256
SHA-3 Believed to be secure
+ 256 & 512 bit
Blowfish « Used for password hashing in OpenBSD <+
Derived from ciphers
3DES . Linux passwords used to use this

CS 417 © 2021 Paul Krzyzanowski

Tamperproof Integrity:
Message Authentication Codes and
Digital Signatures

Message Integrity: MACs

* We rely on hashes to assert the integrity of messages

- An attacker can create a new message M’ & a new hash
and replace H(M) with H(M’)

"Hello, Jib!" - "Hello, Jab!"

Hash=a8e02bl... — Hash=4d77eal...

* So, let’s create a checksum that relies on a key for validation:
Message Authentication Code (MAC) = hash(M, key)

CS 417 © 2021 Paul Krzyzanowski 9

Message Authentication Codes (MAC)

Hash of message and a symmetric key:
An intruder will not be able to replace the hash value

— You need to have the key and the message to recreate the hash

MACs provide message integrity
* The hash assures us that the original message has not been modified

* The encryption of the hash assures us that an attacker could not have re-
created the hash

CS 417 © 2021 Paul Krzyzanowski 10

Digital Signatures

Create a hash that anyone can verify but only the owner can create:
Hash of message encrypted with the owner’s private key

* Alice encrypts the hash with her private key

« Bob validates by decrypting it with her public key &
comparing with a hash of the message

Digital signatures add non-repudiation

* Only Alice could have created the signature because
only Alice has her private key

CS 417 © 2021 Paul Krzyzanowski 11

Digital Signature Primitives

1. Key generation: { signing_key, verification_key } := gen_keys(key_size)
signing_key = private_key, k
verification_key = public_key, K

2. Signing: signature := sign(message, private_key)
signature := sign(message, private_key)
= signature := E,(hash(message))

The signature uses a hash(message) instead of the message
« We’d like the signature to be a small, fixed size

* We are not hiding the contents of the message

* We trust hashes to be collision-free

3. Validation: verify(verification_key, message, signature)
Dg(signature) £ hash(message)

CS 417 © 2021 Paul Krzyzanowski

12

Digital signatures

Alice Bob

H(P)

> =1

Alice generates a hash of the message, H(P)

CS 417 © 2021 Paul Krzyzanowski 13

Digital signatures: public key cryptography

Alice Bob

Alice encrypts the hash with her private key
This is her signature.

CS 417 © 2021 Paul Krzyzanowski 14

Using Digital Signatures

modification?

Alice ‘ l Bob
=| HP > 1=
= P = l =
1S=Ea<H(P» >
YA '

Alice sends Bob the message & the encrypted hash

CS 417 © 2021 Paul Krzyzanowski 15

Using Digital Signatures

modification?

Alice ‘ l Bob
— > |=]|| HP
= HP) - = l = (P) =]
— 1S=Ea<H(P» > | | Da(S)
a——1=]
A

1. Bob decrypts the hash using Alice’s public key
2. Bob computes the hash of the message sent by Alice

CS 417 © 2021 Paul Krzyzanowski 16

Using Digital Signatures

Alice moTificatilon? Bob
=| HP) = l > I=(1LHE) =]
— | S=ExHeP) > % 0A8) ey

If the hashes match, the signature is valid
= the encrypted hash must have been generated by Alice

CS 417 © 2021 Paul Krzyzanowski 17

Digital signatures & non-repudiation

* Digital signatures provide non-repudiation

— Only Alice could have created the signature because only Alice has her
private key

* Proof of integrity
— The hash assures us that the original message has not been modified

— The encryption of the hash assures us that an attacker could not have
re-created the hash

CS 417 © 2021 Paul Krzyzanowski 18

Digital signatures: multiple signers

Alice Bob Charles
== == |F"
— S=E,(HP)—> |=—'| p,(s S (—

1 AORES 777> DA(S)
7 lseEb(H(P» — Dg(S))
A
Charles:

» Generates a hash of the message, H(P)

» Decrypts Alice’s signature with Alice’s public key
- Validates the signature: DA(S) = H(P)

« Decrypts Bob’s signature with Bob’s public key
- Validates the signature: Dg(S) = H(P)

CS 417 © 2021 Paul Krzyzanowski 19

Covert AND authenticated messaging

If we want to keep the message secret
— combine encryption with a digital signature

Use a session key:
— Pick a random key, K, to encrypt the message with a symmetric algorithm
— Encrypt K with the public key of each recipient

— For signing, encrypt the hash of the message with sender’s private key

CS 417 © 2021 Paul Krzyzanowski 20

Covert and authenticated messaging

Alice

-«
=
=

Alice generates a digital signature by
encrypting the message with her private key

CS 417 © 2021 Paul Krzyzanowski 21

Covert and authenticated messaging

Alice

-«
=
=

I
P

Alice picks a random key, K, and encrypts the message V/
with it using a symmetric cipher

CS 417 © 2021 Paul Krzyzanowski 22

Covert and authenticated messaging

Alice

= 7
—| C=E«M) %
L Hv)
[=] g 777
S=E,(H(M))
K 277
| C1=EB(K)
> % for Charles
Co=Ec(K)

Alice encrypts the session key for each
recipient of this message using their public keys

CS 417 © 2021 Paul Krzyzanowski 23

Covert and authenticated messaging

Alice Bob
= 7
— > / ~~~~~~ Sender: Alice
— é \"“\\\Message:
lH(M) T M / Bob
=] N7/ |
S=E,(HM) > Signature: \
a
. » KeyforBob: K Charles
K > % T Key for Charl K
| C1_EB(K) //:, ey for Charles
Co=Ec(K)

The aggregate message is sent to Bob & Charles

CS 417 © 2021 Paul Krzyzanowski

24

The End

CS 417 © 2021 Paul Krzyzanowski

25

