
CS 419: Computer Security

TA: Shuo Zhang
Paul Krzyzanowski © 2020 Paul Krzyzanowski. No part of this

content, may be reproduced or reposted in
whole or in part in any manner without the
permission of the copyright owner.

Recitation: week of 2020-10-05
Project 2 Discussion

October 8, 2020
1

Assignment 6 (Project 2)
• This assignment has two parts

• This is an individual assignment

• Goal: use function interposition
– Replace readdir and time functions in existing programs

October 8, 2020 © 2020 Paul Krzyzanowski 2

Environment
• You must do this assignment on a Linux platform

• It uses shared library preloading, which is not available on BSD,
macOS, or Windows systems

• Your personal Linux system will probably be fine
– But you are responsible to make sure it works on the Rutgers iLab machines

October 8, 2020 © 2020 Paul Krzyzanowski 3

Environment
Download a-6.zip (see assignment) and unzip it

You will see
– Makefile – you can use this to build the zip file for submitting your program

– random – this is a demo of using LD_PRELOAD to replace a function

– hidefile – this is for Part 1

– unexpire – this is for Part 2

October 8, 2020 © 2020 Paul Krzyzanowski 4

Background
• LD_PRELOAD is an environment variable that can define a shared library that

will be loaded & searched before any other library

• If a program needs to call a library function, this library will be checked first

• It's set as any shell environment variable:

export LD_PRELOAD=$PWD/mylib.so

Specifies to:

• Load the shared library $PWD/mylib.so
– $PWD expands to the path of the current directory

• Check this for any needed functions first

October 8, 2020 © 2020 Paul Krzyzanowski 5

Example
• We looked at this in class

• Here's a C program to print 10 random numbers

October 8, 2020

#include <time.h>
#include <stdio.h>
#include <stdlib.h>

int
main(int argc, char **argv)
{

int i;
srand(time(NULL)); // seed the generator with the current time
for (i=0; i < 10; i++)

printf("%d\n", rand()%100);
return 0;

}

random.c

© 2020 Paul Krzyzanowski 6

Example
• If we compile and run it, we get:

October 8, 2020

#include <time.h>
#include <stdio.h>
#include <stdlib.h>

int
main(int argc, char **argv)
{

int i;
srand(time(NULL));
for (i=0; i < 10; i++)

printf("%d\n", rand()%100);
return 0;

}

random.c

$ gcc -o random random.c
$./random
90
36
89
26
3
31
87
71
79
10

© 2020 Paul Krzyzanowski 7

Example

Now compile it to a shared library & preload it

October 8, 2020

#include <time.h>
#include <stdio.h>
#include <stdlib.h>

int
main(int argc, char **argv)
{

int i;
srand(time(NULL));
for (i=0; i < 10; i++)

printf("%d\n", rand()%100);
return 0;

}

random.c

$ gcc -shared -fPIC myrand.c -o myrand.so -ldl
$ export LD_PRELOAD=$PWD/myrand.so

int rand() {
return 42;

}

myrand.c

Let's create a file myrand.c that
redefines the rand function

© 2020 Paul Krzyzanowski 8

Example
If we run the program again, it uses our
function instead of the standard one

We did not have to recompile the program!

October 8, 2020

#include <time.h>
#include <stdio.h>
#include <stdlib.h>

int
main(int argc, char **argv)
{

int i;
srand(time(NULL));
for (i=0; i < 10; i++)

printf("%d\n", rand()%100);
return 0;

}

random.c

$./random
42
42
42
42
42
42
42
42
42
42

int rand() {
return 42;

}

myrand.c

© 2020 Paul Krzyzanowski 9

Part 1: Goal
• Attackers sometimes try to hide their files on a system
– The best way is by modifying the kernel but we usually do not have the ability to modify

the kernel

• Instead, we will modify the readdir library function
– This is used by most tools that need to read directory contents on Linux
– Example: ls, find, zsh, sh

• We will create a new version of readdir that checks for a file name stored in
the environment variable HIDDEN
– If the file is in the directory, it will not be made visible to the program that's looking at files

in the directory
– If you know it exists, you can still run it or open it by specifying its path

October 8, 2020 © 2020 Paul Krzyzanowski 10

Example
Preload our library, which replaces the readdir function

October 8, 2020

$ ls -l
total 408
-rw------- 1 pxk allusers 115 Oct 6 12:26 present.pptx
-rw------- 1 pxk allusers 141 Oct 6 12:35 secretfile-zzz
-rw------- 1 pxk allusers 94698 Oct 6 12:33 status-report-1.txt
-rw------- 1 pxk allusers 166518 Oct 6 12:33 status-report-2.txt
-rw------- 1 pxk allusers 77166 Oct 6 12:33 status-report-3.txt
-rw------- 1 pxk allusers 48858 Oct 6 12:33 status-report-4.txt
-rw------- 1 pxk allusers 14 Oct 6 12:34 testfile.c

$ export LD_PRELOAD=$PWD/hidefile.so

Use the ls command to list all the files in a directory

© 2020 Paul Krzyzanowski 11

Example
Set the file name that we want to hide

October 8, 2020

$ ls -l
total 404
-rw------- 1 pxk allusers 115 Oct 6 12:26 present.pptx
-rw------- 1 pxk allusers 94698 Oct 6 12:33 status-report-1.txt
-rw------- 1 pxk allusers 166518 Oct 6 12:33 status-report-2.txt
-rw------- 1 pxk allusers 77166 Oct 6 12:33 status-report-3.txt
-rw------- 1 pxk allusers 48858 Oct 6 12:33 status-report-4.txt
-rw------- 1 pxk allusers 14 Oct 6 12:34 testfile.c

$ HIDDEN=secretfile-zzz

Run the ls command again – secretfile-zzz is missing!

© 2020 Paul Krzyzanowski 12

Example
We can run another command, like find
secretfile-zzz is still missing!

October 8, 2020

$ find .
.
./status-report-1.txt
./status-report-4.txt
./status-report-2.txt
./status-report-3.txt
./present.pptx
./testfile.c

© 2020 Paul Krzyzanowski 13

Example
If we change the file name that we want to hide

October 8, 2020

$ ls -l
total 308
-rw------- 1 pxk allusers 115 Oct 6 12:26 present.pptx
-rw------- 1 pxk allusers 141 Oct 6 12:35 secretfile-zzz
-rw------- 1 pxk allusers 166518 Oct 6 12:33 status-report-2.txt
-rw------- 1 pxk allusers 77166 Oct 6 12:33 status-report-3.txt
-rw------- 1 pxk allusers 48858 Oct 6 12:33 status-report-4.txt
-rw------- 1 pxk allusers 14 Oct 6 12:34 testfile.c

$ HIDDEN=status-report-1.txt

And run the ls command – status-report-1.txt is missing!

© 2020 Paul Krzyzanowski 14

Example
If we remove HIDDEN:

October 8, 2020

$ ls -l
total 408
-rw------- 1 pxk allusers 115 Oct 6 12:26 present.pptx
-rw------- 1 pxk allusers 141 Oct 6 12:35 secretfile-zzz
-rw------- 1 pxk allusers 94698 Oct 6 12:33 status-report-1.txt
-rw------- 1 pxk allusers 166518 Oct 6 12:33 status-report-2.txt
-rw------- 1 pxk allusers 77166 Oct 6 12:33 status-report-3.txt
-rw------- 1 pxk allusers 48858 Oct 6 12:33 status-report-4.txt
-rw------- 1 pxk allusers 14 Oct 6 12:34 testfile.c

$ unset HIDDEN

Then we can see all the files:

© 2020 Paul Krzyzanowski 15

How to do the assignment
• Write a version of readdir in hidefile.c
– Same interface as the standard readdir – look at the manual page
– Each call to returns readdir one file
– Call the REAL readdir function
– If the file is the hidden file then do not return
• Instead, call the REAL readdir function again to get the next file

• Run make to compile it (see assignment instructions)

• Set LD_PRELOAD=$PWD/hidefile.so and run a command like ls
– See instructions
– You can run make test

This will create some test files and set HIDDEN

October 8, 2020 © 2020 Paul Krzyzanowski 16

Things to know
• You still want to call the REAL readdir function inside yours
– To do this, use the ldsym function to load and access the real version of the

function from your library
– Read the references in the assignment for instructions on how to use ldsym

• You need to read the value of the HIDDEN environment variable
– You can get this with a call to getenv

October 8, 2020 © 2020 Paul Krzyzanowski 17

This is a small project
• The implementation of hidefile.c will likely be <10 statements

• As always, develop and test incrementally
– Make sure you understand and can use & run the random example
– Put printf statements so you know that your readdir is being called
– Version 0: don't test files – just print a message and call the real readdir
– Version 1: compare against a hard-coded name, such as "secret"
– Version 2: get the environment variable and compare against that
– Version 3: test – make sure it works and works if HIDDEN is not set
– Version 4: remove your printf statements

October 8, 2020 © 2020 Paul Krzyzanowski 18

Part 2
• You are given a Linux program called unexpire
– Pretend this is an evaluation version of a program that has an expiration time

coded into it
– The program exits (expires) if the current date is after January 1, 2020
– It also refuses to run with any date earlier than October 1, 2020.

• GOAL:
You wish to continue using this program past this hard-coded
expiration time and you want to defeat its check for the time

October 8, 2020 © 2020 Paul Krzyzanowski 19

Part 2: unexpire
• The program calls the C library function time() to get the current time

• You will create a file called newtime.c that:
– Implements a different version of the time() function that returns a date in the

range Oct 1 2020 … Jan 1 2020 so the expiration check will pass
– However, you want the program to report the correct time after the check takes

place
• Your time() function will pass future requests straight through to the standard library time

function

• newtime.c will be compiled into a shared library that you will preload via
export LD_PRELOAD=$PWD/newtime.so

October 8, 2020 © 2020 Paul Krzyzanowski 20

Example runs

October 8, 2020

$./unexpire
It is now Oct 06 2020 19:47:23
You cannot run this program before Wed Jan 1 00:00:00 2020
This software expires at Thu Oct 1 01:00:00 2020

ACCESS DENIED: It is now Oct 06 2020 19:47:23. Access expired at Thu Oct 1 01:00:00 2020

If we run unexpire, it tells us that access has expired

But if we preload our time library – newtime.so – and run unexpire:

$ export LD_PRELOAD=$PWD/newtime.so
$./unexpire
It is now Sep 01 2020 01:00:00
You cannot run this program before Wed Jan 1 00:00:00 2020
This software expires at Thu Oct 1 01:00:00 2020

Sep 01 2020 01:00:00: access granted!
The current time is: Oct 06 2020 19:50:19
PASSED! You reset the time successfully!

© 2020 Paul Krzyzanowski 21

What you need to do
• This is similar to Part 1
– Your library will load and call the real function … in some cases

• You need to define a suitable time
– Pick a time in the range Jan 1 2020 … Oct 1 2020
– Figure out how to encode it so time can return it
– You can compute this outside of the program
• Or you can use a combination of strptime and mktime to set the time
• strptime: converts a human-friendly time into a struct tm
• mktime: converts a struct tm into seconds count that time can return
• Do a bit of research – read the man pages – it's not hard!

• You need to keep state
– You want to return your custom time just the first time – then pass through to time
– You can keep state in a static or global variable

October 8, 2020 © 2020 Paul Krzyzanowski 22

What to submit
• You must do this assignment on an iLab system

• Submit a zip file that contains
– hidefile/hidefile.c your definition of readdir for Part 1
– unexpire/newtime.c your definition of time for Part 2

To prepare the zip file, you can go to the top-level directory of the
download package and run

make zip

October 8, 2020 © 2020 Paul Krzyzanowski 23

The End

October 8, 2020 © 2020 Paul Krzyzanowski 24

