CS 419: Computer Security

Recitation: week of 2020-10-19

Project 3 Discussion

TA: Shuo Zhang
Paul Krzyzanowski conten, may ba reproduced of repoted

whole or in part in any manner without the
permission of the copyright owner.

Assignment 11 (Project 3)

* This assignment has three parts

 This is an individual assignment

» Goal: implement three simple ciphers
These will include using:
— Polyalphabetic cipher using table-driven substitutions
— Stream cipher using
A linear congruential pseudorandom keystream generator
« Simple password hashing for seed generation
— Block cipher derived from the stream cipher

« Keystream-based byte swapping
 Cipher block chaining (CBC) for diffusion

October 24, 2020 CS 419 © 2019 Paul Krzyzanowski 2

Environment

* You should be able implement this on any platform
— You may use Go, Python, Java, C, C++

* But you are responsible to make sure it works on the Rutgers iLab
machines with no extra software

October 24, 2020 CS 419 © 2020 Paul Krzyzanowski 3

Part 1: Binary Vigenere Cipher

October 24, 2020 CS 419 © 2020 Paul Krzyzanowski

Review: Vigenere polyalphabetic cipher

KEY ———

- Repeat keyword over text: (e.g., key=FACE)
Keystream: FA CEF ACE FACEF

Plaintext: MY CAT HAS FLEAS

<«—TEXT

* Encrypt: find intersection:
row = keystream letter
column = plaintext (message) letter

» Decrypt: find column
— Row = keystream letter, search for ciphertext
— Column heading = plaintext letter

Message is encrypted with as many
substitution ciphers as there are unique letters
in the keyword

October 24, 2020 CS 419 © 2020 Paul Krzyzanowski 5

Part 1: Binary Vigenere Cipher

* The Vigenére cipher was designed for pencil-and-paper cryptography
— It's designed for use with text only

* You will modify the cipher to work with binary data
— Any file
— Arbitrary binary key file

October 24, 2020 CS 419 © 2020 Paul Krzyzanowski 6

Binary Vigenere Cipher

* Instead of a text-based table we use KEY ——]
a byte table 0 1 2 3 ------ 252 [253)254 255
— 256 rows & 256 columns »;
m o 0 1 2 3 252 |253|254 255
 Arbitrary plaintext file data 1 1 2 3 4 243 |254/255 0
— Not just text 2 254 255 0 1 254|255| 0 1
. Arbitrary key [3 253 254 255 0 255(0 |1 2
— Data stored in a keyfile | | |
. 252 252 253 254 255 248 249 250 251
» Compute ciphertext
253 253 254 255 0 249 250 251 252
— Column = next key byte -
. 254 254 255 0 1 250 251 252 253
— Row = next plaintext byte
_ Ciphertext = intersection 255 255 0 1 2 251 252 253 254

October 24, 2020 CS 419 © 2020 Paul Krzyzanowski 7

Binary Vigenere Cipher

» Use a repeating key KEY ——]
— Just as in the Vigeneére cipher 0 1 2 3 ------ 252 [053)254 255
|-
« Wrap back to the start of the key when 5 0o 1 2 3 2592 253|254 255
|—
you run out of key data ; s a4 o o lome @
To encrypt a byte of plaintext: 2 254 255 0 1 254|255/ 0 1
1. Look up ciphertext [3 253 254 255 0 2550 |1 2
ciphertext[n] = ! | |
table[row=message[n]][column=ciphertext[i]] ' i :
- _ 252 252 253 254 255 248 249 250 251
2. Go to the next position of plaintext
n o= n+l 253 253 254 255 0 249 250 251 252
N 254 254 255 0 1 250 251 252 253
3. Go to the next position of the key
i - (l+1) % length(ClpherteXt) 255 255 0 1 2 251 252 253 254

October 24, 2020 CS 419 © 2020 Paul Krzyzanowski 8

Implementation

» Create two programs - one to encrypt and another to decrypt
— vencrypt keyfile message ciphertext
— vdecrypt keyfile ciphertext plaintext

October 24, 2020 CS 419 © 2020 Paul Krzyzanowski 9

Implementation Hints

 Test thoroughly!
— Come up with various test cases
— A key with bytes of O will always produce plaintext
— A key with bytes of 1 will produce shifted data (e.g., “ABC” = “BCD”)

— Printing input & output of data (as hex #s, for example) can help you test

* Hints

— The od command dumps binary data:
od —t xC keyfile dumps contents of keyfile as hex bytes

— If you think about the problem, you don’t need a table
« The entire encryption can be one while loop with one line of code within it!

October 24, 2020 CS 419 © 2020 Paul Krzyzanowski 10

Validate your program

* You will be provided with:
— Reference versions of the programs: vencrypt, vdecrypt
— Sample keys
— Small sample content

* Your program should produce identical output

October 24, 2020 CS 419 © 2020 Paul Krzyzanowski 11

Part 2: Stream Cipher

October 24, 2020 CS 419 © 2020 Paul Krzyzanowski

12

Stream ciphers

Key stream generator produces a sequence of pseudo-random bytes
Simulates a one-time pad

= e

Keystream
generator —>80 S1 S2 83 S4 S5 SG S7 S8 ------ Sn
CPODODDDDOD D
Po P1 P2 P3 P4 P5 P6 P7 P8 ------ Pn
Co C1 Cz C3 C4 C5 Ce C7 Cg """ Cn
Ci=S DP

October 24, 2020 CS 419 © 2020 Paul Krzyzanowski 13

Keystream Generator

« Stream ciphers work by creating a key sequence that is as long as the
message

» They do this by using a keystream generator
— This is a pseudorandom number generator
— We want the sequence to have a statistically random distribution

— But it needs to be reproducible so we can get the same encryption & decryption
if we use the same key

* In this assignment, we will use a very simple pseudorandom number
generator

October 24, 2020 CS 419 © 2020 Paul Krzyzanowski 14

Linear congruential keystream generator

* The cipher will use a linear congruential generator
* One of the best-known pseudorandom number generators
» Each value is f(previous value):

Xne1 = (@X, + c) mod m

 Where

— Xnp1 = Next pseudorandom number

— X, = last pseudorandom number

— m = modulus — we will use 256 (28) to get a byte stream

— 4, C = magic parameters, some produce better data than others

© a=1103515245 These are used by ANSI C, C90,C99, etc.
e Cc=12345 See the Wikipedia article

October 24, 2020 CS 419 © 2020 Paul Krzyzanowski 15

https://en.wikipedia.org/wiki/Linear_congruential_generator

Seed: hash

* We need a seed for the pseudorandom number generator

* This is just a number

* Instead of asking users to enter a number, we will use a password string:
— seed = hash(password)

* For this assignment, we will not use a cryptographic hash function but one
that is trivial to implement:

— sbdm — used in gawk, sdbm database, Berkeley DB, etc

static unsigned long
sdbm(unsigned char *str) {
unsigned long hash = 0;
int c;
while (c = *str++)
hash = ¢ + (hash << 6) + (hash << 16) - hash;
return hash;

October 24, 2020 CS 419 © 2020 Paul Krzyzanowski 16

http://www.cse.yorku.ca/~oz/hash.html

Test your keystream generator

- Before implementing the cipher, test your seed generation and keystream
against the reference implementation provided

— Cipher implementations need to work across different platforms and different
implementations

* You are provided with a program called prand-test

$./prand-test
usage: ./prand-test [-p password | -s seed] [-n num]

October 24, 2020 CS 419 © 2020 Paul Krzyzanowski 17

Test your keystream generator

Test password — seed

$./prand-test -p monkeyOl
using seed=5423267027848090132 from password="monkey01l"”

Test keystream generator from seed

$./prand-test -s 123 -n 5
using seed=123

152

241

214

87

68

October 24, 2020 CS 419 © 2020 Paul Krzyzanowski 18

Test your keystream generator

Test keystream generator from password

$./prand-test -p monkey0l -n 10
using seed=5423267027848090132 from password="monkey0O1l"
189

178

3

128

185

254

95

172

117

10

October 24, 2020 CS 419 © 2020 Paul Krzyzanowski 19

The program

Write the program

scrypt password plaintextfile ciphertextfile

password seed
» . 542326702784
monkey01” — 4490132
keystream

— Oxdb —> 0xb2 —* 0x03 —> 0x80 —* 0xb9

generator

plaintext ? ? ? ? ?

“ABCDE" —— A — B — C — D —| E
' ' ' ' '

Oxfc Oxf0 0x40 Oxc4 Oxfc

October 24, 2020 CS 419 © 2020 Paul Krzyzanowski 20

Validate your program

* You will be provided with:
— Reference versions of the program: scrypt
— Small sample content

* Your program should produce identical output

* Note: there is no encrypt/decrypt
— XOR of the ciphertext with the same keystream produces plaintext

scrypt password plaintextfile ciphertextfile
scrypt password ciphertextfile plaintextfile

October 24, 2020 CS 419 © 2020 Paul Krzyzanowski 21

Part 3: Block Cipher With CBC

October 24, 2020 CS 419 © 2020 Paul Krzyzanowski

22

Simple Block Cipher

- Symmetric block ciphers apply an SP network in multiple rounds
— This provides confusion & diffusion within the block

 Cipher Block Chaining (CBC)
— Adds diffusion across multiple blocks

* We will take a different approach and turn the stream cipher from
Part 2 into a simple block cipher

— Read data in 16-byte blocks (128 bits)

— Apply CBC (adds diffusion)

— Exchange random pairs of bytes in the block (enhances confusion)
— XOR result with the keystream (this adds confusion)

October 24, 2020 CS 419 © 2020 Paul Krzyzanowski 23

Padding

* Block ciphers work on a block of data (16 bytes for us)

* The last part of a file might be a partial block
— We will add padding at the end ... and remove it when decrypting

- Padding: 1-16 extra bytes
— If the file was an even # of blocks, padding adds an extra block
— Otherwise, if just fills up the block
— Each byte of the padding is simply the # of bytes of padding that were added

October 24, 2020 CS 419 © 2020 Paul Krzyzanowski 24

Padding Examples

I a|'m d| o|n|e 06 | 06| 06| 06| 06 | 06
T h|i]|s i | s t | h|e e n|d| ol
T|hi|i]|s i | s t h|e e n|d

16| 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16

October 24, 2020 CS 419 © 2020 Paul Krzyzanowski 25

Reminder: Cipher Block Chaining (CBC) mode

— Random initialization vector (IV) = bunch of k random bits
— Exclusive-or with first plaintext block — then encrypt the block

c; = Ex(m;) D ¢4

1\ Plaintext, Plaintext, Plaintexty
:? :@ :%
Key = Block cipher Key —» Blockcipher | ---------- Key [Block cipher
v \4 v
Ciphertext, Ciphertext, Ciphertexty

Block O Block 1 Block N

Byte Swapping

* We add a step where we move bytes around within a block

» This removes the positional dependency of each byte
— You cannot identify the correspondence of a byte of plaintext with a block of ciphertext

» Get 16 bytes of key from the keystream generator
— Each byte of the keystream wiill identify two bytes that will be swapped in the block

for (1i=0; i < blocksize; i=i+l)
first = key[i] & O0xf Jower 4 bits of the keystream
second = (key[i] >> 4) & 0xf top 4 bits of the keystream
swap(block[first], block[second]) exchange the bytes

October 24, 2020 CS 419 © 2020 Paul Krzyzanowski 27

How the program works

 Create an initialization vector (IV)
— 16 bytes — obtained by reading 16 bytes of data from the keystream generator

* For each 16-byte block of plaintext
1. If it's the last block, add padding

2. XOR the data with the previous 16 byte-block of ciphertext
(the first time, XOR with the V)

Read 16 bytes of keystream data

Swap 16 pairs of bytes based on the keystream data
Ciphertext_block = result @ keystream data (from step 2)
Write the ciphertext

L

October 24, 2020 CS 419 © 2020 Paul Krzyzanowski 28

Your programs

* Two programs - one to encrypt & one to decrypt
sbencrypt password plaintextfile ciphertextfile
sbdecrypt password ciphertextfile plaintextfile

* You will be provided with:
— Reference versions of the program: sbencrypt, sbdecrypt
— Small sample content

* Your program should produce identical output

October 24, 2020 CS 419 © 2020 Paul Krzyzanowski 29

Test & Submission

You don’t need anything to get started beyond the instructions

Download a-11.zip (see assignment) and unzip it

This will provide reference programs and keys
You should test your programs with your own data too!

Submission
— Create a Makefile to create the executables:
* vencrypt, vdecrypt, scrypt, sbencrypt, sbdecrypt
« We will not try to figure out how to run your program
— Create a zip file containing the source code & Makefile
* No executables, no libraries, no test datal

October 24, 2020 CS 419 © 2020 Paul Krzyzanowski 30

The End

October 24, 2020

CS 419 © 2020 Paul Krzyzanowski

31

