
CS 419: Computer Security

TA: Shuo Zhang
Paul Krzyzanowski © 2020 Paul Krzyzanowski. No part of this

content, may be reproduced or reposted in
whole or in part in any manner without the
permission of the copyright owner.

Recitation: week of 2020-10-19
Project 3 Discussion

Assignment 11 (Project 3)
• This assignment has three parts

• This is an individual assignment

• Goal: implement three simple ciphers
These will include using:
– Polyalphabetic cipher using table-driven substitutions
– Stream cipher using
• A linear congruential pseudorandom keystream generator
• Simple password hashing for seed generation

– Block cipher derived from the stream cipher
• Keystream-based byte swapping
• Cipher block chaining (CBC) for diffusion

October 24, 2020 CS 419 © 2019 Paul Krzyzanowski 2

Environment
• You should be able implement this on any platform
– You may use Go, Python, Java, C, C++

• But you are responsible to make sure it works on the Rutgers iLab
machines with no extra software

October 24, 2020 CS 419 © 2020 Paul Krzyzanowski 3

Part 1: Binary Vigenère Cipher

October 24, 2020 CS 419 © 2020 Paul Krzyzanowski 4

Review: Vigenère polyalphabetic cipher
• Repeat keyword over text: (e.g., key=FACE)

Keystream: FA CEF ACE FACEF
Plaintext: MY CAT HAS FLEAS

• Encrypt: find intersection:
row = keystream letter
column = plaintext (message) letter

• Decrypt: find column
– Row = keystream letter, search for ciphertext
– Column heading = plaintext letter

Message is encrypted with as many
substitution ciphers as there are unique letters
in the keyword

October 24, 2020 CS 419 © 2020 Paul Krzyzanowski 5

KEY

TE
XT

Part 1: Binary Vigenère Cipher
• The Vigenère cipher was designed for pencil-and-paper cryptography
– It’s designed for use with text only

• You will modify the cipher to work with binary data
– Any file
– Arbitrary binary key file

October 24, 2020 CS 419 © 2020 Paul Krzyzanowski 6

Binary Vigenère Cipher
• Instead of a text-based table we use

a byte table
– 256 rows & 256 columns

• Arbitrary plaintext file data
– Not just text

• Arbitrary key
– Data stored in a keyfile

• Compute ciphertext
– Column = next key byte
– Row = next plaintext byte
– Ciphertext = intersection

October 24, 2020 CS 419 © 2020 Paul Krzyzanowski 7

252

254243

253 254

0255

255

254

0255

255 0

21

1

0

21

1 2

43

3

254

254253

255 0

0255

1

252

254253

253 254

0255

255

254

0255

255 0

21

1

248

250249

249 250

252251

251

250

252251

251 252

254253

253

0 1 2 3 252 253 254 255

0

1

2

3

252

253

254

255

KEY

TE
XT

Binary Vigenère Cipher
• Use a repeating key
– Just as in the Vigenère cipher

• Wrap back to the start of the key when
you run out of key data

To encrypt a byte of plaintext:

1. Look up ciphertext
ciphertext[n] =
table[row=message[n]][column=ciphertext[i]]

2. Go to the next position of plaintext
n = n+1

3. Go to the next position of the key
i = (i+1) % length(ciphertext)

October 24, 2020 CS 419 © 2020 Paul Krzyzanowski 8

252

254243

253 254

0255

255

254

0255

255 0

21

1

0

21

1 2

43

3

254

254253

255 0

0255

1

252

254253

253 254

0255

255

254

0255

255 0

21

1

248

250249

249 250

252251

251

250

252251

251 252

254253

253

0 1 2 3 252 253 254 255

0

1

2

3

252

253

254

255

KEY

TE
XT

Implementation
• Create two programs – one to encrypt and another to decrypt
– vencrypt keyfile message ciphertext
– vdecrypt keyfile ciphertext plaintext

October 24, 2020 CS 419 © 2020 Paul Krzyzanowski 9

Implementation Hints
• Test thoroughly!
– Come up with various test cases
– A key with bytes of 0 will always produce plaintext
– A key with bytes of 1 will produce shifted data (e.g., “ABC” ⇒ “BCD”)
– Printing input & output of data (as hex #s, for example) can help you test

• Hints
– The od command dumps binary data:

od –t xC keyfile dumps contents of keyfile as hex bytes
– If you think about the problem, you don’t need a table
• The entire encryption can be one while loop with one line of code within it!

October 24, 2020 CS 419 © 2020 Paul Krzyzanowski 10

Validate your program
• You will be provided with:
– Reference versions of the programs: vencrypt, vdecrypt
– Sample keys
– Small sample content

• Your program should produce identical output

October 24, 2020 CS 419 © 2020 Paul Krzyzanowski 11

Part 2: Stream Cipher

October 24, 2020 CS 419 © 2020 Paul Krzyzanowski 12

Stream ciphers
Key stream generator produces a sequence of pseudo-random bytes
Simulates a one-time pad

October 24, 2020 CS 419 © 2020 Paul Krzyzanowski 13

Keystream
generator

key

S0 S1 S2 S3 S4 S5 S6 S7 S8 Sn

P0 P1 P2 P3 P4 P5 P6 P7 P8 Pn

C0 C1 C2 C3 C4 C5 C6 C7 C8 Cn

⊕⊕⊕⊕⊕⊕⊕⊕⊕ ⊕

Ci = Si ⊕ Pi

seed

Keystream Generator
• Stream ciphers work by creating a key sequence that is as long as the

message

• They do this by using a keystream generator
– This is a pseudorandom number generator
– We want the sequence to have a statistically random distribution
– But it needs to be reproducible so we can get the same encryption & decryption

if we use the same key

• In this assignment, we will use a very simple pseudorandom number
generator

October 24, 2020 CS 419 © 2020 Paul Krzyzanowski 14

Linear congruential keystream generator
• The cipher will use a linear congruential generator

• One of the best-known pseudorandom number generators

• Each value is f(previous value):

Xn+1 = (aXn + c) mod m

• Where
– Xn+1 = next pseudorandom number
– Xn = last pseudorandom number
– m = modulus – we will use 256 (28) to get a byte stream
– a, c = magic parameters, some produce better data than others
• a = 1103515245
• c = 12345

October 24, 2020 CS 419 © 2020 Paul Krzyzanowski 15

These are used by ANSI C, C90 ,C99, etc.
See the Wikipedia article

https://en.wikipedia.org/wiki/Linear_congruential_generator

Seed: hash
• We need a seed for the pseudorandom number generator

• This is just a number

• Instead of asking users to enter a number, we will use a password string:
– seed = hash(password)

• For this assignment, we will not use a cryptographic hash function but one
that is trivial to implement:
– sbdm – used in gawk, sdbm database, Berkeley DB, etc

October 24, 2020 CS 419 © 2020 Paul Krzyzanowski 16

static unsigned long
sdbm(unsigned char *str) {

unsigned long hash = 0;
int c;
while (c = *str++)

hash = c + (hash << 6) + (hash << 16) - hash;
return hash;

}

http://www.cse.yorku.ca/~oz/hash.html

Test your keystream generator
• Before implementing the cipher, test your seed generation and keystream

against the reference implementation provided
– Cipher implementations need to work across different platforms and different

implementations

• You are provided with a program called prand-test

October 24, 2020 CS 419 © 2020 Paul Krzyzanowski 17

$./prand-test
usage: ./prand-test [-p password | -s seed] [-n num]

Test your keystream generator

October 24, 2020 CS 419 © 2020 Paul Krzyzanowski 18

Test password → seed

$./prand-test -p monkey01
using seed=5423267027848090132 from password="monkey01”

Test keystream generator from seed

$./prand-test -s 123 -n 5
using seed=123
152
241
214
87
68

Test your keystream generator

October 24, 2020 CS 419 © 2020 Paul Krzyzanowski 19

Test keystream generator from password

$./prand-test -p monkey01 -n 10
using seed=5423267027848090132 from password="monkey01"
189
178
3
128
185
254
95
172
117
10

The program
Write the program

scrypt password plaintextfile ciphertextfile

October 24, 2020 CS 419 © 2020 Paul Krzyzanowski 20

“monkey01” 542326702784
8090132

seedpassword

keystream
generator

“ABCDE”

plaintext

A

0xdb

⨁

0xfc

B

0xb2

⨁

0xf0

C

0x03

⨁

0x40

D

0x80

⨁

0xc4

E

0xb9

⨁

0xfc

Validate your program
• You will be provided with:
– Reference versions of the program: scrypt
– Small sample content

• Your program should produce identical output

• Note: there is no encrypt/decrypt
– XOR of the ciphertext with the same keystream produces plaintext

scrypt password plaintextfile ciphertextfile
scrypt password ciphertextfile plaintextfile

October 24, 2020 CS 419 © 2020 Paul Krzyzanowski 21

Part 3: Block Cipher With CBC

October 24, 2020 CS 419 © 2020 Paul Krzyzanowski 22

Simple Block Cipher
• Symmetric block ciphers apply an SP network in multiple rounds
– This provides confusion & diffusion within the block

• Cipher Block Chaining (CBC)
– Adds diffusion across multiple blocks

• We will take a different approach and turn the stream cipher from
Part 2 into a simple block cipher
– Read data in 16-byte blocks (128 bits)
– Apply CBC (adds diffusion)
– Exchange random pairs of bytes in the block (enhances confusion)
– XOR result with the keystream (this adds confusion)

October 24, 2020 CS 419 © 2020 Paul Krzyzanowski 23

Padding
• Block ciphers work on a block of data (16 bytes for us)

• The last part of a file might be a partial block
– We will add padding at the end … and remove it when decrypting

• Padding: 1-16 extra bytes
– If the file was an even # of blocks, padding adds an extra block
– Otherwise, if just fills up the block
– Each byte of the padding is simply the # of bytes of padding that were added

October 24, 2020 CS 419 © 2020 Paul Krzyzanowski 24

Padding Examples

October 24, 2020 CS 419 © 2020 Paul Krzyzanowski 25

T h i s i s t h e e n d .

I a m d o n e . 06 06 06 06 06 06

16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16

T h i s i s t h e e n d 01

Reminder: Cipher Block Chaining (CBC) mode
– Random initialization vector (IV) = bunch of k random bits
– Exclusive-or with first plaintext block – then encrypt the block

ci = EK(mi) ⊕ ci-1

Block cipher

Plaintext0IV

Ciphertext0

⊕

Key Block cipher

Plaintext1

⊕

Key

Block 0 Block 1

Block cipher

PlaintextN

⊕

Key

Block N

Ciphertext1 CiphertextN

Byte Swapping
• We add a step where we move bytes around within a block

• This removes the positional dependency of each byte
– You cannot identify the correspondence of a byte of plaintext with a block of ciphertext

• Get 16 bytes of key from the keystream generator
– Each byte of the keystream will identify two bytes that will be swapped in the block

October 24, 2020 CS 419 © 2020 Paul Krzyzanowski 27

for (i=0; i < blocksize; i=i+1)
first = key[i] & 0xf lower 4 bits of the keystream
second = (key[i] >> 4) & 0xf top 4 bits of the keystream
swap(block[first], block[second]) exchange the bytes

How the program works
• Create an initialization vector (IV)
– 16 bytes – obtained by reading 16 bytes of data from the keystream generator

• For each 16-byte block of plaintext
1. If it’s the last block, add padding
2. XOR the data with the previous 16 byte-block of ciphertext

(the first time, XOR with the IV)
3. Read 16 bytes of keystream data
4. Swap 16 pairs of bytes based on the keystream data
5. Ciphertext_block = result ⨁ keystream data (from step 2)
6. Write the ciphertext

October 24, 2020 CS 419 © 2020 Paul Krzyzanowski 28

Your programs
• Two programs – one to encrypt & one to decrypt
sbencrypt password plaintextfile ciphertextfile
sbdecrypt password ciphertextfile plaintextfile

• You will be provided with:
– Reference versions of the program: sbencrypt, sbdecrypt
– Small sample content

• Your program should produce identical output

October 24, 2020 CS 419 © 2020 Paul Krzyzanowski 29

Test & Submission
You don’t need anything to get started beyond the instructions
Download a-11.zip (see assignment) and unzip it

This will provide reference programs and keys

You should test your programs with your own data too!

Submission
– Create a Makefile to create the executables:
• vencrypt, vdecrypt, scrypt, sbencrypt, sbdecrypt
• We will not try to figure out how to run your program

– Create a zip file containing the source code & Makefile
• No executables, no libraries, no test data!

October 24, 2020 CS 419 © 2020 Paul Krzyzanowski 30

The End

October 24, 2020 31CS 419 © 2020 Paul Krzyzanowski

