
CS 419: Computer Security

TA: Shuo Zhang
Paul Krzyzanowski © 2020 Paul Krzyzanowski. No part of this

content, may be reproduced or reposted in
whole or in part in any manner without the
permission of the copyright owner.

Recitation: week of 2020-11-02
Project 4 Discussion

Assignment 13 (Project 4)
• This assignment is short and comprises 2 parts

• This is an individual assignment

• Goal: implement a hashcash-like Proof of Work system for files:
1. Create a header file to accompany a file
• The header will contain a proof-of-work value for the file

2. Write a program to validate the proof-of-work header against the file

November 4, 2020 CS 419 © 2019 Paul Krzyzanowski 2

Environment
• You should be able implement this on any platform
– You may use Go, Python, Java, C, C++

• But you are responsible to make sure it works on the Rutgers iLab
machines with no extra software

• You must create executable program or scripts that will run your code
– Include a Makefile if your code needs to be compiled
• We should be able to type make to generate the code

– We should be able to run your programs by typing the commands:
• ./pow-create
• ./pow-check

November 4, 2020 CS 419 © 2020 Paul Krzyzanowski 3

Hashcash
• Hashcash was system created to reduce spam by requiring sender to:
– Solve a difficult problem before sending the message
– Provide proof of solving this problem

• For hashcash, this proof was a "stamp" – a header in the mail message

• How was this supposed to reduce spam?
– Your email client might spend a few seconds solving a problem to create the stamp
– A spammer who wants to send a million messages would have to spend years of

compute time to do this

• The solution should be verified efficiently by the receiver

• The idea behind hashcash was adopted by Bitcoin (and others) as Proof of
Work for adding a new block to the blockchain

November 4, 2020 CS 419 © 2020 Paul Krzyzanowski 4

The puzzle
• What problem is easy to solve in one direction but difficult in the other?
– One-way functions ⇒ cryptographic hashes

• A SHA-256 hash of "The grass is green" is
f3ccca8f3852f5e2932d75db5675d59de30d9fa10530dd9855bd4a6cd0661d8e

• It takes a few milliseconds to compute this

• The inverse – find the text when given the hash – requires a brute-force
search
– Try hashing many possible texts to get that value

• That's too difficult!

November 4, 2020 CS 419 © 2020 Paul Krzyzanowski 5

The easier puzzle
Create some text W that when concatenated with the message M produces a
hash with a certain property

• A SHA-256 hash of "The grass is green" is
f3ccca8f3852f5e2932d75db5675d59de30d9fa10530dd9855bd4a6cd0661d8e

• The first high-order bits: 1111 0011 1100 ...

• What can we prefix to the message so the first 6 bits of the hash will all be 0?
– We can't figure this out
– We need to try different combinations … but not a a lot in this case
– After 41 tries, we find that W="f" and M="The grass is green" produces

hash(W || M) = 0189108649ff4cd02c8af4e0…
= 0000 0000 0001 1000 …

November 4, 2020 CS 419 © 2020 Paul Krzyzanowski 6

Adaptive difficulty
• We can set the average difficulty (D) of the problem by changing the number of leading 0 bits we

need to find.

• Here's how the problem gets difficult with increasing D
– Hashing (W || M) where M = "The grass is green"

November 4, 2020 CS 419 © 2020 Paul Krzyzanowski 7

Difficulty, D Iterations Prefix, W Time (s)

9 1,891 JQ 0.002491

17 20,271 d$3 0.02586

23 1,108,192 et*2 1.4

27 28,415,235 3O941 36.59

28 248,316,223 VaKH9 323.5

30 351,377,855)FT5D 453.1

31 4,490,406,584 8(i6N2 5063.6

32 22,016,518,319 tJ2IRB 12,270

Your results may vary – these are based on my sequence of W values and my old 3.4 GHz i7 iMac

Adaptive difficulty
• Large content takes longer to hash than short content

• We can keep the content size similar by adding prefixes (W) to the hash of
the message M: hash(W || hash(M))

• The difficulty is adjusted by changing values of D:
– Searching for a hash result with n leading 0 bits:

hash(W || hash(M)) < 2256-D

• Will depend on:
– Luck (but that averages out with many messages)
– Your computer speed (and quality of code)
– Value of D

November 4, 2020 CS 419 © 2020 Paul Krzyzanowski 8

• The prefix, W, that we found to so the message hash has the desired
properties is called the Proof of Work

• For example
– It took trying 351,377,855 hashes to find a prefix that would cause 'The grass is green' to

create a hash with the top 30 bits all 0
– You only need to do one hash to verify the result

• Original hash

• With Proof-of-work =)FT5D

Proof of Work

November 4, 2020 CS 419 © 2020 Paul Krzyzanowski 9

$ echo -n 'The grass is green' |openssl sha256
f3ccca8f3852f5e2932d75db5675d59de30d9fa10530dd9855bd4a6cd0661d8e

$ echo -n ')FT5DThe grass is green' |openssl sha256
00000002ccc523fe126c1db89d4ddd426b9f8087f2e29574d29628314fd877ed

Your assignment: part 1
• Write a program called pow-create

• It will compute a proof of work string for the specified difficulty
– For us, difficulty will be the # of leading 0 bits in a SHA-256 hash

• For example, suppose we have a file walrus.txt:

• We can find the SHA-256 hash with the openssl command:

November 4, 2020 CS 419 © 2020 Paul Krzyzanowski 10

The time has come, the Walrus said,
To talk of many things:
Of shoes — and ships — and sealing-wax —
Of cabbages — and kings —
And why the sea is boiling hot —
And whether pigs have wings.

$ openssl sha256 < walrus.txt
66efa274991ef4ab1ed1b89c06c2c8270bb73ffdc28a9002a334ec3023039945

Your assignment: part 1
• To generate a proof of work with a difficulty of 20, we run

• This tells us it took 1,496,419 tests and 1.75 seconds to find a value that can
be prefixed to the initial hash value to create a hash whose value has at least
20 leading 0 bits

• The proof of work value is the string hl04

November 4, 2020 CS 419 © 2020 Paul Krzyzanowski 11

$./pow-create 20 walrus.txt 2>/dev/null
File: walrus.txt
Initial-hash: 66efa274991ef4ab1ed1b8...28a9002a334ec3023039945
Proof-of-work: hl04
Hash: 000002b2311ce58427ab7c1bfd0cb1...3d948c1c603a524dc11fb28
Leading-bits: 22
Iterations: 1496419
Compute-time: 1.75376

Your assignment: part 1 – test your results!

Recreate the original hash:

November 4, 2020 CS 419 © 2020 Paul Krzyzanowski 12

$./pow-create 20 walrus.txt 2>/dev/null
Initial-hash: 66efa274991ef4ab1ed1b8...28a9002a334ec3023039945
Proof-of-work: hl04
Hash: 000002b2311ce58427ab7c1bfd0cb1...3d948c1c603a524dc11fb28
Leading-bits: 22
Compute-time: 1.75376

$ echo -n 'hl0466efa27499...9002a334ec3023039945'|openssl sha256
000002b2311ce58427ab7c1bfd0cb1679906b24343d948c1c603a524dc11fb28

$ openssl sha256 <walrus.txt
66efa274991ef4ab1ed1b89c06c2c8270bb73ffdc28a9002a334ec3023039945

Add the proof-of-work prefix

check the leading bits: [5 0s ⇒ 5*4 = 20 bits of 0] + [2=0010 ⇒ 2 bits of 0]

What you need to do
• Find the SHA-256 hash of a file

• Convert it to a printable hex string (just like the openssl command shows)

• Try various prefixes to this printable format of the hash
– Compute the SHA-256 hash of the result
– See if it has at least the desired # of zeros
– If no, try again

November 4, 2020 CS 419 © 2020 Paul Krzyzanowski 13

What you need to do: output
Print your output in a standard header format (e.g., mail headers, HTTP
headers) — one item per line — with the following fields:

November 4, 2020 CS 419 © 2020 Paul Krzyzanowski 14

File: filename
Initial-hash: sha-256 hash printed as a hex string
Proof-of-work: proof of work string
Hash: sha-256 hash of the proof of work with the hash string
Leading-bits: number of leading 0 bits in the hash
Iterations: how many prefixes you had to try
Compute-time: compute time in seconds

Hints
• Don't write your own SHA-256 function
– You can use hashlib in python or find source for other languages
– If using source
• Do NOT submit entire crypto libraries – prune the source to ONLY the file you need
• Provide a Makefile – we will not try to figure out how to build anything
• Make sure it works on the iLab systems

• Make your hash output look like the same output openssl produces
– You need this for valid hashing
– However, do not invoke openssl from your program – that would be horribly inefficient

• It's up to you to figure out prefixes
– BUT keep them printable – No whitespace characters and avoid quotes for simplicity

November 4, 2020 CS 419 © 2020 Paul Krzyzanowski 15

By the way
• You might want to set thresholds on the # of iterations of prefixes you try to

avoid running too long

• Test with small difficulty levels – especially on shared iLab systems
– Once you get to 30 or so leading 0 bits, it will take a VERY long time
– Try difficulty values in the range 8 – 20

• If you were really going to use this:
– You would compute the hash based on a binary prefix with a binary hash instead of the

string
– We use text here just for convenience in output and testing
– The only important values are the proof of work and the # of bits
– You would use longer difficulty values.

November 4, 2020 CS 419 © 2020 Paul Krzyzanowski 16

Part 2: Verify
• The second part of the program is to write a verifier

pow-check powheader file

• Checks the proof-of-work in the file powheader against the file file

• The powheader file is the output of the pow-create command

• This program:
– Validates the hash in the Initial-hash header
– Computes hash of the Proof-of-work string prepended to the original hash string
– Compares this value with the Hash header
– The Leading-bits data must match the # of leading 0 bits in the Hash header

• The output will be "passed" or "failed"
– Specify which tests failed

November 4, 2020 CS 419 © 2020 Paul Krzyzanowski 17

What to submit
• First, test your programs thoroughly
– Test on different input data – don't expect it to be text.

• Source files only – no object files, Java class files, etc.

• If compilation is needed
– Include a Makefile that will generate the necessary executables from source

• Provide or generate two programs
– pow-create difficulty sourcefile
– pow-check headerfile sourcefile

November 4, 2020 CS 419 © 2020 Paul Krzyzanowski 18

The End

November 4, 2020 19CS 419 © 2020 Paul Krzyzanowski

