

Welcome to computer security

About Me

Web site and contact

web: www.cs.rutgers.edu/~pxk/419

mirror: www.pk.org/419

email: pxk@cs.rutgers.edu

phone: +142.59.79.35.02

zoom: https://rutgers.zoom.us/my/pxk.rutgers

Canvas: https://rutgers.instructure.com/courses/66088

Class info

- Contact info
- TA info
- Syllabus
- Lecture notes
- Class news
- Homework

Class meetings

- Classes will be held via Zoom
- Lecture recordings will be made available
 - YouTube? Canvas?
 - Web site
- You can take classes asynchronously
 - I'll be around for questions
 - Send via zoom chat, email, etc.
 - I will post FAQs and corrections if needed

Text

None required – but we will use several sources

Security Engineering: A Guide to Building Dependable Distributed Systems 2nd Edition

by Ross J. Anderson

Free at

https://www.cl.cam.ac.uk/~rja14/book.html

But mostly...

- Other reading material on the web
- Lecture slides
- Lecture notes/summaries

Policy

- Weekly quizzes: 5-6 questions; 15 minutes
- Short programming assignments (~5)
 - Individual assignments
 - Due prior to the due date

Written assignments

- Due prior to the due date
- No MS-Word, Pages, InDesign submissions!
- PDF or text with line breaks only (HTML for in-line text on sakai)
- Collaboration & academic integrity
 - Individual assignments no copying!

Grades

- Quizzes ~ 50%
- 4-5 written assignments ~ 15%
- ~4-5 programming assignments ~35%

What this course IS

- Security engineering
- Understand why systems have weaknesses
- How do we deal with these weaknesses?
 - People, devices, networks, operating systems, applications
 - Cryptographic algorithms
 - Authentication & key distribution protocols
 - Ensuring integrity & confidentiality

Things we'll cover

- Intro: threats, risks, security needs
- Access control
 - Core OS mechanisms for access contol
 - Mandatory vs. discretionary access control
- Code injection
 - Buffer overflow, shell scripts, input validation
- Client-side risks & protection
 - Viruses, worms, trojans
 - Human factors
- App confinement
 - Jails, virtual machines, sandboxes

- Cryptography
 - Encryption
- Integrity & key distribution
 - Public keys, hashing, digital signatures
- Authentication
 - Passwords, tokens, biometrics, cards
- Cryptocurrency
 - Bitcoin, proof of work, proof of stake
- Network security
 - Switches, routers, services
- Network protection
 - Firewalls, VPNs

- Web security
- Mobile security
- Anonymous communication
 - Tor
- Content protection
 - Steganography, watermarking, DRM
- IoT
 - Security risks in embedded software
- Forensics

What this course is NOT

- How to write viruses/trojans/malware
- How to break into systems
- How to be a hacker
- Rigorous mathematics on systems, security, or cryptography

The End