
Authentication

• Identification: who are you?
• Authentication: prove it
• Authorization: you can do this

Some protocols (or services) combine all three

2October 28, 2020 CS 419 © 2020 Paul Krzyzanowski

Cryptographic Authentication

October 28, 2020 CS 419 © 2020 Paul Krzyzanowski 3

The concept: prove you have the key
Ask the other side to prove they can encrypt or decrypt a message with
the key

October 28, 2020 CS 419 © 2020 Paul Krzyzanowski 4

Create a nonce, n
(random bunch of bits)

n

Encrypt the nonce with the
shared key, K

EK(n)
Validate the result:
DK(EK(n)) ≟ n

• This assumes a pre-shared key and symmetric cryptography.
• After that, Alice can encrypt & send a session key.
• Minimize the use of the pre-shared key.

Alice Bob

Mutual authentication
• Alice had Bob prove he has the key

• Bob may want to validate Alice as well
⇒ mutual authentication
– Bob will do the same thing

• Have Alice prove she has the key

• Pre-shared key: Alice encrypts the nonce with the key

• Public key: Alice encrypts the nonce with her private key

October 28, 2020 CS 419 © 2020 Paul Krzyzanowski 5

Combined authentication & key exchange
Basic idea with symmetric cryptography:
Use a trusted third party (Trent) that has all the keys
• Alice wants to talk to Bob: she asks Trent

– Trent generates a session key encrypted for Alice
– Trent encrypts the same key for Bob (ticket)

• Authentication is implicit:
– If Alice can encrypt a message for Trent, she proved she knows her key
– If Bob can decrypt the message from Trent, he proved he knows his key

• Trent can also perform authorization
• Weaknesses that we need to address:

– Replay attacks

October 28, 2020 CS 419 © 2020 Paul Krzyzanowski 6

A B

T

EA(K) EB(K)

Combined authentication &
key exchange algorithms

7October 28, 2020 CS 419 © 2020 Paul Krzyzanowski

Security Protocol Notation
Z || W

– Z concatenated with W

A → B : { Z || W } kA,B
– A sends a message to B
– The message is the concatenation of Z & W and is encrypted by key kA,B, which is shared

by users A & B

A → B : { Z } kA || { W } kA,B
– X sends a message to Y
– The message is a concatenation of Z encrypted using A’s key and W encrypted by a key

shared by A and Y

r1, r2

– nonces – strings of random bits
CS 419 © 2020 Paul Krzyzanowski 8

Bootstrap problem
How can Alice & Bob communicate securely?

• Alice cannot send a key to Bob in the clear
– We assume an unsecure network

• We looked at two mechanisms:
– Diffie-Hellman key exchange
– Public key cryptography

Let’s examine the problem some more … in the context of
authentication & key exchange

9October 28, 2020 CS 419 © 2020 Paul Krzyzanowski

Simple Protocol
Use a trusted third party – Trent – who has all the keys

Trent creates a session key for Alice and Bob

CS 419 © 2020 Paul Krzyzanowski 10

TrentAlice
Request session key to Bob

TrentAlice
{ kA,B } kA || { kA,B } kB

BobAlice
{ kA,B } kB

BobAlice
{ m } kA,B

Problems
• How does Bob know he is talking to Alice?

– Trusted third party, Trent, has all the keys
– Trent knows the request came from Alice since only he and Alice can have the key
– Trent can authorize Alice’s request
– Bob gets a session key encrypted with Bob’s key, which only Trent could have created
• But Bob doesn’t know who requested the session – is the request really from Alice?
• Trent would need to add sender information to the message encrypted for Bob

• Vulnerable to replay attacks
– Eve records the message from Alice to Bob and later replays it
– Bob will think he’s talking to Alice and re-use the same session key

• Protocols should provide authentication & defense against replay attacks

October 28, 2020 CS 419 © 2020 Paul Krzyzanowski 11

Needham-Schroeder
Add nonces – random strings (r1, r2) – to avoid replay attacks

12CS 419 © 2020 Paul Krzyzanowski

TrentAlice
{ Alice || Bob || r1 }

TrentAlice
{ Alice || Bob || r1 || kA,B || { Alice || kA,B } kB } kA

BobAlice
{ Alice || kA,B } kB

BobAlice
{ r2 } kA,B

BobAlice
{ r2 – 1 } kA,B

➀
➁
➂
➃
➄

Needham-Schroeder
Add nonces – random strings – avoid replay attacks

13October 28, 2020 CS 419 © 2020 Paul Krzyzanowski

TrentAlice
{ Alice || Bob || r1 }

TrentAlice { Alice || Bob || r1 || kS || { Alice || kS } kB } kA

BobAlice
{ Alice || kS } kB

BobAlice
{ r2 } kS

BobAlice
{ r2 – 1 } kS

➀
➁
➂
➃
➄

• Bob now tries to find out if this is a replay attack
• If it is, Eve will not be able to decipher r2

• Alice knows only Bob & Trent can read this
and get the session key.
• Bob knows it’s a request from Alice

Message must have been created by Trent & is a response to
the first message (contains r1). Use of r1 ensures it’s not a
replay attack.

This is an authentication step: Bob asks Alice to
prove she knows kA,B

Add nonces – random strings – avoid replay attacks
• Alice knows only Bob & Trent can read this

and get the session key.
• Bob knows it’s a request from Alice

TrentAlice
{ Alice || Bob || r1 }

TrentAlice
{ Alice || Bob || r1 || kA,B || { Alice || kA,B } kB } kA

BobAlice
{ Alice || kA,B } kB

BobAlice
{ r2 } kA,B

BobAlice
{ r2 – 1 } kA,B

➀
➁
➂
➃
➄

Needham-Schroeder

14October 28, 2020 CS 419 © 2020 Paul Krzyzanowski

• Bob now tries to find out if this is a replay attack
• If it is, Eve will not be able to decipher r2

Message must have been created by Trent & is a response to
the first message (contains r1). Use of r1 ensures it’s not a
replay attack.

This is an authentication step: Bob asks Alice to
prove she knows kA,B

Needham-Schroeder Protocol Vulnerability
• We assume all keys are secret

• But suppose Eve can obtain the session key from an old message
(she worked hard, got lucky, and cracked an earlier message)

October 28, 2020 CS 419 © 2020 Paul Krzyzanowski 15

BobEve
{ Alice || kA,B } kB

BobEve
{ r2 } kA,B

BobEve
{ r2 – 1 } kA,B

Bob sees this as a legitimate request
approved by Trent. It was … but earlier!

Eve the eavesdropper. She decrypted an old session key and is trying
to get Bob to use it to think he’s talking to Alice.

Needham-Schroeder is still vulnerable to a certain
replay attack … if an old session key is known!

➂
➃
➄

Denning-Sacco Solution
• Problem: replay in the third step of the protocol
– Eve replays the message: { Alice || kA,B } kB

• Solution: use a timestamp T to detect replay attacks
– The trusted third party (Trent) places a timestamp in a message that is encrypted

for Bob
– The attacker has an old session key but not Alice’s, Bob’s or Trent’s keys
– Eve cannot spoof a valid message that is encrypted for Bob

16October 28, 2020 CS 419 © 2020 Paul Krzyzanowski

Needham-Shroeder w/Denning-Sacco mods
Add nonces – random strings – AND a timestamp

17

TrentAlice
{ Alice || Bob || r1 }

TrentAlice
{ Alice || Bob || r1 || kA,B || { Alice || T || kA,B } kB } kA

BobAlice
{ Alice || T || kA,B } kB

BobAlice
{ r2 } kA,B

BobAlice
{ r2 – 1 } kA,B

October 28, 2020 CS 419 © 2020 Paul Krzyzanowski

Problem with timestamps
• Use of timestamps relies on synchronized clocks
– Messages may be falsely accepted or falsely rejected because of bad time

• Time synchronization becomes an attack vector
– Create fake NTP responses
– Generate fake GPS signals

18October 28, 2020 CS 419 © 2020 Paul Krzyzanowski

Otway-Rees Protocol: Session IDs

Another way to correct the third message replay problem
• Instead of using timestamps
– Use a random integer, n, that is associated with all messages in the key

exchange

• The protocol is altered slightly
– Alice first sends a message to Bob

• The message contains the session ID & nonce encrypted with Alice’s secret key
– Bob forwards the message to Trent

• And creates a message containing a nonce & the same session ID encrypted with Bob’s
secret key

– Trent creates a session key & encrypts it for both Alice and for Bob

19October 28, 2020 CS 419 © 2020 Paul Krzyzanowski

Otway-Rees Protocol
Use nonces (r1, r2) & session IDs (n)

20

BobAlice
n || Alice || Bob || {r1 || n || Alice || Bob } kA

BobTrent

BobTrent

BobAlice
n || { r1 || kA,B } kA

n || Alice || Bob || {r1 || n || Alice || Bob } kA

{r2 || n || Alice || Bob } kB

n || { r1 || kA,B } kA || { r2 || kA,B } kB

October 28, 2020 CS 419 © 2020 Paul Krzyzanowski

Alice sends the communication request to
Bob – with the session ID

Bob authenticates himself &
forwards request to Trent

Kerberos

21October 28, 2020 CS 419 © 2020 Paul Krzyzanowski

Kerberos
• Authentication service developed by MIT
– project Athena 1983-1988

• Uses a trusted third party & symmetric cryptography

• Based on Needham Schroeder with the Denning Sacco modification

• Passwords not sent in clear text
– assumes only the network can be compromised

• Supported in most all popular operating systems
– Default network authentication used in Microsoft Windows
– Supported in macOS, Linux, FreeBSD, z/OS, …
– Used by Rutgers to store NetIDs via the Central Authentication Service (CAS)

October 28, 2020 CS 419 © 2020 Paul Krzyzanowski 22

Kerberos

Users and services authenticate themselves to each other

To access a service:
– User presents a ticket issued by the Kerberos authentication server
– Service uses the ticket to verify the identity of the user

Kerberos is a trusted third party
– Knows all (users and services) passwords
– Responsible for

• Authentication: validating an identity
• Authorization: deciding whether someone can access a service
• Key distribution: giving both parties an encryption key (securely)

23October 28, 2020 CS 419 © 2020 Paul Krzyzanowski

Kerberos – General Flow
User Alice wants to communicate with a service Bob

Both Alice and Bob have keys – Kerberos has copies
– key = hash(password)

Step 1:
– Alice authenticates with Kerberos server

• Gets session key and ticket

Step 2:
– Alice gives Bob the ticket, which contains the session key
– Convinces Bob that she got the session key from Kerberos

24October 28, 2020 CS 419 © 2020 Paul Krzyzanowski

Kerberos (1): Authorize, Authenticate

{ "Bob’s server", T, kS } kA,B

Alice Authentication Server (AS)

{ "Alice", T, kA,B } kB

TICKET

25

{ "Alice” || "Bob" }

CS 419 © 2020 Paul Krzyzanowski

eh? (Alice can’t read this!)

Alice decrypts this:
• Gets ID of “Bob’s server”
• Gets session key & timestamp
• Knows message came from AS

“I’m Alice and want to talk to Bob”

If Alice is allowed to talk to Bob,
generate session key, kA,B

Kerberos (2): Send key

Alice encrypts a timestamp with
session key

Bob decrypts the ticket:
• Ticket was created by Kerberos on

request from Alice
• Gets session key

Decrypts time stamp
• Validates time window
• Prevents replay attacks

{ "Alice", kA,B } kB || { T’ } kA,B

Alice Bob

ticket

26CS 419 © 2020 Paul Krzyzanowski

Kerberos (3): Authenticate recipient of message

Alice validates timestamp

Encrypt Alice’s timestamp in return
message

Alice Bob

{ T’+1 } kA,B

{Messages} kA,B
Alice & Bob communicate by
encrypting data with kA,B

27CS 419 © 2020 Paul Krzyzanowski

Kerberos key usage
• Every time a user wants to access a service
– User’s password (key) must be used to decode the message from Kerberos

• We can avoid this by caching the password in a file
– Not a good idea

• Another way: create a temporary password
– We can cache this temporary password
– It's just a session key to access Kerberos – to get access to other services
– Split Kerberos server into

Authentication Service + Ticket Granting Service

28CS 419 © 2020 Paul Krzyzanowski

Ticket Granting Server (TGS)
• TGS works like a temporary ID

• User first requests access to the TGS
– Contact Kerberos Authentication Service (AS knows all users & their keys)
• Gets back a ticket & session key to the TGS – these can be cached

• To access any service
– Send a request to the TGS – encrypted with the TGS session key

along with the ticket for the TGS
– The ticket tells the TGS what your session key is
– It responds with a session key & ticket for that service

October 28, 2020 CS 419 © 2020 Paul Krzyzanowski 29

October 28, 2020 CS 419 © 2020 Paul Krzyzanowski 30

Kerberos AS + TGS: Step 1
Authentication

Service (AS)
Ticket Granting
Service (TGS)

A

users & user
keys Authorization

Kerberos
Key Distribution Center
(KDC)

(1) Request access to TGS

(2) Here's a session key & ticket for the TGS
Enter password to decrypt { kTGS,A } kA
Cache the TGS session key, kTGS,A

B

October 28, 2020 CS 419 © 2020 Paul Krzyzanowski 31

Kerberos AS + TGS
Authentication

Service (AS)
Ticket Granting
Service (TGS)

A B

users & user
keys Authorization

Kerberos
Key Distribution Center
(KDC)

(3) TGS-ticket, { T } kTGS,A

(4) Here's a session key & ticket for the Bob
session key: { "Bob’s server", T, kA,B } kTGS,A
ticket: { "Alice", T, kA,B } kB

{ Bob, please } kTGS,A

October 28, 2020 CS 419 © 2020 Paul Krzyzanowski 32

Kerberos AS + TGS
Authentication

Service (AS)
Ticket Granting
Service (TGS)

A B

users & user
keys Authorization

Kerberos
Key Distribution Center
(KDC)

(5) { "Alice", kA,B } kB || { T’ } kA,B

(6) { T'+1 } kA,B

{ messages }kA,B

Using Kerberos
$ kinit

Password: enter password
ask AS for permission (session key) to access TGS

Alice gets:

Compute key (A) from password to decrypt session key kA,TGS and
get TGS ID.

You now have a ticket to access the Ticket Granting Service

{“TGS”, T, kA,TGS } kA

{“Alice”, kA,TGS } kTGS

33

TGS Ticket

Session key & encrypted timestamp

October 28, 2020 CS 419 © 2020 Paul Krzyzanowski

Using Kerberos
$ rlogin somehost

rlogin uses the TGS Ticket to request a ticket for the rlogin service
on somehost

{“rlogin@somehost”, kA,R} kA,TGS

{“Alice”, kA,R} kR

{“Alice”, kA,TGS} kTGS, {T} kA,TGS
rlogin TGS

kA,R = session key
for rlogin

ticket for rlogin server
on somehost

Alice sends session key, S, to TGS

Alice receives session key for rlogin service & ticket to pass to rlogin service

34October 28, 2020 CS 419 © 2020 Paul Krzyzanowski

Combined authentication & key exchange
Basic idea with symmetric cryptography:
Use a trusted third party (Trent) that has all the keys
• Alice wants to talk to Bob: she asks Trent
– Trent generates a session key encrypted for Alice
– Trent encrypts the same key for Bob (ticket)

• Authentication is implicit:
– If Alice can decrypt the session key, she proved she knows her key
– If Alice can decrypt the session key, he proved he knows his key

• Weaknesses that we had to fix:
– Replay attacks – add nonces – Needham-Schroeder protocol
– Replay attacks re-using a cracked old session key
• Add timestamps: Denning-Sacco protocol, Kerberos
• Add session IDs at each step: Otway-Rees protocol

October 28, 2020 CS 419 © 2020 Paul Krzyzanowski 35

Public Key Exchange

We saw how this works…
• Alice’s & Bob’s public keys known to all: eA, eB
• Alice & Bob’s private keys are known only to the owner: da, db

• Simple protocol to send symmetric session key: kS

36

{ kS } eB

CS 419 © 2020 Paul Krzyzanowski

A B

Public Key Exchange

We saw how this works…
• Alice’s & Bob’s public keys known to all: eA, eB
• Alice & Bob’s private keys are known only to the owner: da, db

• Simple protocol to send symmetric session key: kS

37

{ kS } eB

CS 419 © 2020 Paul Krzyzanowski

A B

Adding authentication
• Have Bob prove that he has the private key
– Same way as with symmetric cryptography – prove he can encrypt or decrypt

CS 419 © 2020 Paul Krzyzanowski 38

{ r1 } eB

A B

Create nonce, r1

r1

Adding authentication
• Have Bob prove that he has the private key
– Same way as with symmetric cryptography – prove he can encrypt or decrypt

CS 419 © 2020 Paul Krzyzanowski 39

{ r1 } eB

A B

Create nonce, r1

r1

r2

{ r2 } eA

Adding identity binding
• How do we know we have the right public keys?

• Get the public key from a trusted certificate
– Validate the signature on the certificate

40

{ r1 } eB || CA

CS 419 © 2020 Paul Krzyzanowski

A B

CB

{ r2 } eB

{ r2 } eA || r1

Cryptographic toolbox
• Symmetric encryption

• Public key encryption

• Hash functions

• Random number generators

41October 28, 2020 CS 419 © 2020 Paul Krzyzanowski

User Authentication

October 28, 2020 CS 419 © 2020 Paul Krzyzanowski 42

October 28, 2020 CS 419 © 2020 Paul Krzyzanowski 43

Three Factors of Authentication

1. Ownership Key, card Can be stolen
Something you have

2. Knowledge Passwords,
PINs

Can be guessed,
shared, stolenSomething you know

3. Inherence Biometrics
(face, fingerprints)

Requires hardware
May be copied
Not replaceable if lost or stolenSomething you are

Multi-Factor Authentication
Factors may be combined
• ATM machine: 2-factor authentication (2FA)

– ATM card something you have
– PIN something you know

• Password + code delivered via SMS: 2-factor authentication
– Password something you know
– Code something you have: your phone

Two passwords ≠ Two-factor authentication
The factors must be different

October 28, 2020 CS 419 © 2020 Paul Krzyzanowski 44

Authentication: PAP
Password Authentication Protocol

login, password

OKclient server

• Unencrypted, reusable passwords
• Insecure on an open network
• Also, the password file must be protected from open access
– But administrators can still see everyone’s passwords

What if you use the same password on Facebook as on Amazon?

45

name:password
database

October 28, 2020 CS 419 © 2020 Paul Krzyzanowski

Passwords are bad
• Human readable & easy to guess

– People usually pick really bad passwords

• Easy to forget

• Usually short

• Static ... reused over & over
– Security is as strong as the weakest link
– If a username (or email) & password is stolen from one server, it might be usable on others

• Replayable
– If someone can grab it or see it, they can play it back

October 28, 2020 CS 419 © 2020 Paul Krzyzanowski 46

It's not getting better

Past eight years of top passwords from SplashData's list

Rank 2012 2013 2014 2015 2016 2017 2018 2019

1 password 123456 123456 123456 123456 123456 123456 123456

2 123456 password password password password password password 123456789

3 12345678 12345678 12345 12345678 12345 12345678 123456789 qwerty

4 abc123 qwerty 12345678 qwerty 12345678 qwerty 12345678 password

5 qwerty abc123 qwerty 12345 football 12345 12345 1234567

6 monkey 123456789 123456789 123456789 qwerty 123456789 111111 12345678

7 letmein 111111 1234 football 1234567890 letmein 1234567 12345

8 dragon 1234567 baseball 1234 1234567 1234567 sunshine iloveyou

https://en.wikipedia.org/wiki/List_of_the_most_common_passwords

CS 419 © 2020 Paul Krzyzanowski 47

Recent large-scale leaks of password from servers have shown that people
DO NOT pick good passwords

Policies to the rescue?
Password rules

“Everyone knows that an exclamation point is a 1, or an I, or the
last character of a password. $ is an S or a 5. If we use these
well-known tricks, we aren’t fooling any adversary. We are
simply fooling the database that stores passwords into thinking
the user did something good”

— Paul Grassi, NIST

Periodic password change requirement problems
– People tend to change passwords rapidly to exhaust the

history list and get back to their favorite password
– Forbidding changes for several days enables a denial of service

attack
– People pick worse passwords, incorporating numbers,

months, or years

October 28, 2020 CS 419 © 2020 Paul Krzyzanowski 48

https://pages.nist.gov/800-63-3/sp800-63b.html#sec5
https://fortune.com/2017/05/11/password-rules/

NIST recommendations
• Remove periodic password change

requirements

• Drop complexity requirements
(numbers, letters, symbols)

• Choose long passwords

• Avoid
– Passwords obtained from databases of previous breaches
– Dictionary words
– Repetitive or sequential characters (e.g. ‘aaaaa’, ‘1234abcd’)
– Context-specific words, such as the name of the service, the username, and

derivatives thereof

October 28, 2020 CS 419 © 2020 Paul Krzyzanowski 49

https://pages.nist.gov/800-63-3/sp800-63b.html

PAP: Reusable passwords
Problem #1: Open access to the password file
What if the password file isn’t sufficiently protected and an intruder gets hold of it? All
passwords are now compromised!

Even if an admin sees your password, this might also be your password on other
systems.

How about encrypting the passwords?

• Where would you store the key?

• Adobe did that
– 2013 Adobe security breach leaked 152 million Adobe customer records
– Adobe used encrypted passwords

• But the passwords were all encrypted with the same key
• If the attackers steal the key, they get the passwords

CS 419 © 2020 Paul Krzyzanowski 50

Poor Password Management
Adobe security breach (November 2013)
– 152 million Adobe customer records …

with encrypted passwords
– Adobe encrypted passwords with a symmetric key

algorithm
… and used the same key to encrypt every password!

51

Frequency Password

1 1,911,938 123456
2 446,162 123456789
3 345,834 password
4 211,659 adobe123
5 201,580 12345678
6 130,832 qwerty
7 124,253 1234567
8 113,884 111111
9 83,411 photoshop

10 82,694 123123
11 76,910 1234567890
12 76,186 000000
13 70,791 abc123
14 61,453 1234
15 56,744 adobe1
16 54,651 macromedia
17 48,850 azerty
18 47,142 iloveyou
19 44,281 aaaaaa
20 43,670 654321
21 43,497 12345
22 37,407 666666
23 35,325 sunshine
24 34,963 123321

Top 26 Adobe Passwords
October 28, 2020 CS 419 © 2020 Paul Krzyzanowski

PAP: Reusable passwords

Solution:
Store a hash of the password in a file
– Given a file, you don’t get the passwords
– Have to resort to a dictionary or brute-force attack
– Example, passwords hashed with SHA-512 hashes (SHA-2)

52CS 419 © 2020 Paul Krzyzanowski

What is a dictionary attack?
• Suppose you got access to a list of hashed passwords
• Brute-force, exhaustive search: try every combination
– Letters (A-Z, a-z), numbers (0-9), symbols (!@#$%...)
– Assume 30 symbols + 52 letters + 10 digits = 92 characters
– Test all passwords up to length 8
– Combinations = 928 + 927 + 926 + 925 + 924 + 923 + 922 + 921 = 5.189 × 1015

– If we test 1 billion passwords per second: ≈ 60 days

• But some passwords are more likely than others
– 1,991,938 Adobe customers used a password = “123456”
– 345,834 users used a password = “password”

• Dictionary attack
– Test lists of common passwords, dictionary words, names
– Add common substitutions, prefixes, and suffixes

CS 419 © 2020 Paul Krzyzanowski 53

Easiest to do if
the attacker
steals a hashed
password file –
so we read-
protect the
hashed
passwords to
make it harder
to get them

How to speed up a dictionary attack
Create a table of precomputed hashes

Now we just search a table for the hash to find the password

54October 28, 2020 CS 419 © 2020 Paul Krzyzanowski

SHA-256 Hash password

8d969eef6ecad3c29a3a629280e686cf0c3f5d5a86aff3ca12020c923adc6c92 123456

5e884898da28047151d0e56f8dc6292773603d0d6aabbdd62a11ef721d1542d8 password

ef797c8118f02dfb649607dd5d3f8c7623048c9c063d532cc95c5ed7a898a64f 12345678

1c8bfe8f801d79745c4631d09fff36c82aa37fc4cce4fc946683d7b336b63032 letmein

… …

Salt: defeating dictionary attacks
Salt = random string (typically up to 16 characters)
– Concatenated with the password
– Stored with the password file (it’s not secret)

"am$7b22QL" + "password"
Even if you know the salt, you cannot use precomputed hashes to search for a password
(because the salt is prefixed to the password string and becomes part of the hash)

You will not have a precomputed hash("am$7b22QLpassword")

CS 419 © 2020 Paul Krzyzanowski 55

Example:
SHA-256 hash of "password", salt = "am$7b22QL”= hash("am$7b22QLpassword") =
076bb015496e1db7b57e4c3b1c34d69504358b13fae4c50270cf40dfa92a1996

Longer passwords
English text has an entropy of
about 1.2-1.5 bits per character

Random text has an entropy ≈
log2(1/95) ≈ 6.6 bits/character

56

Assume 95 printable characters

October 28, 2020 CS 419 © 2020 Paul Krzyzanowski

Defenses
• Use longer passwords
– But can you trust users to pick ones with enough entropy?

• Rate-limit guesses
– Add timeouts after an incorrect password

• Linux waits about 3 secs – and terminates the login program after 5 tries

• Lock out the account after N bad guesses
– But this makes you vulnerable to denial-of-service attacks

• Use a slow algorithm to make guessing slow
– OpenBSD bcrypt Blowfish password hashing algorithm

57October 28, 2020 CS 419 © 2020 Paul Krzyzanowski

People forget passwords
• Especially seldom-used ones – how do we handle that?
• Email them?

– Common solution
– Requires that the server be able to get the password (can’t store a hash)
– What if someone reads your email?

• Reset them?
– How do you authenticate the requester?
– Usually send reset link to email address created at registration
– But – what if someone reads your mail? …or you no longer have that address?

• Provide hints?
• Write them down?

– OK if the threat model is electronic only

CS 419 © 2020 Paul Krzyzanowski 58

Reusable passwords in multiple places
• People often use the same password in different places

• If one site is compromised, the password can be used elsewhere
– People often try to use the same email address and/or username

• This is the root of phishing attacks

59October 28, 2020 CS 419 © 2020 Paul Krzyzanowski

Password Managers
Software that stores passwords in an encrypted file

• Do you trust the protection?
– The reputation of the company & its security policies
– The synchronization capabilities?

• Can malware get to the database?

• In general, these are good
– Way better than storing passwords in a file
– Encourages having unique passwords per site
– Password managers may have the ability to recognize web sites

& defend against phishing

60CS 419 © 2020 Paul Krzyzanowski

October 28, 2020 CS 419 © 2020 Paul Krzyzanowski 61

LastPass fixes bug that could let
malicious websites extract your
last used password
Even password managers have security bugs
By Jon Porter • Sep 16, 2019

LastPass has patched a bug that would have allowed a
malicious website to extract a previous password
entered by the service’s browser extension. ZDNet
reports that the bug was discovered by Tavis Ormandy,
a researcher in Google’s Project Zero team, and was
disclosed in a bug report dated August 29th. LastPass
fixed the issue on September 13th, and deployed the
update to all browsers where it should be applied
automatically, something LastPass users would be
smart to verify.

Password managers have a security
flaw. But you should still use one.
Exclusive: A new study finds bugs in five of the most popular
password managers. So how is it safe to keep all your eggs
in one basket?
By Geoffrey A. Fowler • Feb 19, 2019

Key management risks
Password managers are a form of key storage

October 28, 2020 CS 419 © 2020 Paul Krzyzanowski 62

South African bank to replace 12m cards
after employees stole master key
Postbank says employees printed its master key at one of its data
centers and then used it to steal $3.2 million.
Catalin Cimpanu • June 15 2020

Postbank, the banking division of South Africa's Post Office, has lost more than $3.2 million
from fraudulent transactions and will now have to replace more than 12 million cards for its
customers after employees printed and then stole its master key.

The bank suspects that employees are behind the breach, the news publication said, citing an
internal security audit they obtained from a source in the bank.

The master key is a 36-digit code (encryption key) that allows its holder to decrypt the bank's
operations and even access and modify banking systems. It is also used to generate keys for
customer cards.

https://www.zdnet.com/article/south-african-bank-to-replace-12m-cards-after-employees-stole-master-key/

PAP: Reusable passwords
Problem #2: Network sniffing or shoulder surfing

Passwords can be stolen by observing a user’s session in person or over a network:
– Snoop on http, telnet, ftp, rlogin, rsh sessions
– Trojan horse
– Social engineering
– Key logger, camera, physical proximity
– Brute-force or dictionary attacks

Solutions:

(1) Use an encrypted communication channel

(2) Use one-time passwords

(3) Use multi-factor authentication, so a password alone is not sufficient

63October 28, 2020 CS 419 © 2020 Paul Krzyzanowski

One-time passwords
Use a different password each time
– If an intruder captures the transaction, it won’t work next time

Three forms

1. Sequence-based: password = f(previous password)

2. Time-based: password = f(time, secret)

3. Challenge-based: f(challenge, secret)

64October 28, 2020 CS 419 © 2020 Paul Krzyzanowski

S/key authentication
• One-time password scheme

• Produces a limited number of authentication sessions

• Relies on one-way functions

65October 28, 2020 CS 419 © 2020 Paul Krzyzanowski

Authenticate Alice for 100 logins

• pick random number, R

• using a one-way function (e.g., a hash function), f(x):

x1 = f(R)
x2 = f(x1) = f(f(R))
x3 = f(x2) = f(f(f(R)))

… …
x100 = f(x99) = f(…f(f(f(R)))…)

• then compute:
x101 = f(x100) = f(…f(f(f(R)))…)

S/key authentication

Give this list
to Alice

66October 28, 2020 CS 419 © 2020 Paul Krzyzanowski

S/key authentication
Authenticate Alice for 100 logins

Store x101 in a password file or database record
associated with Alice

alice: x101

67October 28, 2020 CS 419 © 2020 Paul Krzyzanowski

S/key authentication
Alice presents the last number on her list:

Alice to host: { “alice”, x100 }

Host computes f(x100) and compares it with the value in the database
if f(x100 provided by alice) = passwd(“alice”)

replace x101 in db with x100 provided by alice
return success

else
fail

next time: Alice presents x99

If someone sees x100 there is no way to generate x99.

68October 28, 2020 CS 419 © 2020 Paul Krzyzanowski

Authentication: CHAP
Challenge-Handshake Authentication Protocol

challenge

hash(challenge, secret)

OK

client server

Has shared secret Has shared secret

The challenge is a nonce (random bits).
We create a hash of the nonce and the secret.
An intruder does not have the secret and cannot do this!

69

= nonce

CS 419 © 2020 Paul Krzyzanowski

CHAP authentication

Alice network host

“alice” “alice” look up alice’s
key, K

generate random
challenge number CC

R ’ = f(K,C)

R ’ R = f(K, C)

R = R ’ ?“welcome”

an eavesdropper does not see K

70October 28, 2020 CS 419 © 2020 Paul Krzyzanowski

SMS/Email Authentication
• Second factor = your possession of a phone (or computer)

• After login, sever sends you a code via SMS (or email)

• Entering it is proof that you could receive the message

• Dangers
– SIM swapping attacks (social engineering on the phone company)

• Viable for high-value targets
– Social engineering to get email credentials

October 28, 2020 CS 419 © 2020 Paul Krzyzanowski 72

Time-Based Authentication
Time-based One-time Password (TOTP) algorithm
• Both sides share a secret key

– Sometimes sent via a QR code so the user can scan it into the TOTP app

• User runs TOTP function to generate a one-time password

one_time_password = hash(secret_key, time)
• User logs in with: name, password, and one_time_password

• Service generates the same password
one_time_password = hash(secret_key, time)

• Typically 30-second granularity for time
CS 419 © 2020 Paul Krzyzanowski 73

Time-based One-time Passwords
Used by
– Microsoft Two-step Verification
– Google Authenticator
– Facebook Code Generator
– Amazon Web Services
– Bitbucket
– Dropbox
– Evernote
– Zoho
– Wordpress
– 1Password
– Many others…

October 28, 2020 CS 419 © 2020 Paul Krzyzanowski 74

RSA SecurID card
Username:

paul

Password:

1234032848

PIN passcode from card+

Something you know
Something you have

1. Enter PIN
2. Press ◊
3. Card computes password
4. Read password & enter Password:

354982

Passcode changes every 60 seconds

75CS 419 © 2020 Paul Krzyzanowski

SecurID card
Same principle as Time-based One-Time Passwords

• Proprietary device from RSA
– SASL mechanism: RFC 2808

• Two-factor authentication based on:
– Shared secret key (seed)

• stored on authentication card
– Shared personal ID – PIN

• known by user

76

Something you have

Something you know

October 28, 2020 CS 419 © 2020 Paul Krzyzanowski

Yubikey: Yubico One Time Password
HOTP = Hash-based One-Time Password

OTP = hash(hardware_id, passcode, counter)
Passcode generated on the device
from session counters,
previous values,
other sources

CS 419 © 2020 Paul Krzyzanowski 78

Man-in-the-Middle Attacks
Password systems are vulnerable to man-in-the-middle attacks
– Attacker acts as the server

79

Alice Mike Bob

Hi Bob, I’m Alice

October 28, 2020 CS 419 © 2020 Paul Krzyzanowski

Man-in-the-Middle Attacks
Password systems are vulnerable to man-in-the-middle attacks
– Attacker acts as the server

80

Alice Mike Bob

Hi Bob, I’m Alice Hi Bob, I’m Alice

October 28, 2020 CS 419 © 2020 Paul Krzyzanowski

Man-in-the-Middle Attacks
Password systems are vulnerable to man-in-the-middle attacks
– Attacker acts as the server

81

Alice Mike Bob

What’s your password? What’s your password?

October 28, 2020 CS 419 © 2020 Paul Krzyzanowski

Man-in-the-Middle Attacks
Password systems are vulnerable to man-in-the-middle attacks
– Attacker acts as the server

82

Alice Mike Bob

It’s 123456 It’s 123456

October 28, 2020 CS 419 © 2020 Paul Krzyzanowski

Man-in-the-Middle Attacks
Password systems are vulnerable to man-in-the-middle attacks
– Attacker acts as the server

83

Alice Mike Bob

So long, sucker! Welcome, Alice!

October 28, 2020 CS 419 © 2020 Paul Krzyzanowski

Man-in-the-Middle Attacks
Password systems are vulnerable to man-in-the-middle attacks
– Attacker acts as the server

84

Alice Mike Bob

Huh? Download my files

October 28, 2020 CS 419 © 2020 Paul Krzyzanowski

Guarding against man-in-the-middle attacks
• Use a covert communication channel
– The intruder won’t have the key
– Can’t see the contents of any messages
– But you can’t send the key over that channel!

• Use signed messages for all communication
– Signed message = { message, private-key-encrypted hash of message }
– Both parties can reject unauthenticated messages
– The intruder cannot modify the messages

• Signatures will fail (they will need to know how to encrypt the hash)

• But watch out for replay attacks!
– May need to use session numbers or timestamps

85October 28, 2020 CS 419 © 2020 Paul Krzyzanowski

Biometric Authentication

86CS 419 © 2020 Paul Krzyzanowski

Biometrics
• Identify a person based on physical or behavioral characteristics

October 28, 2020 CS 419 © 2019 Paul Krzyzanowski 87

scanned_fingerprint = capture();
if (scanned_fingerprint == stored_fingerprint)

accept_user();
else

reject_user();

=?

We'd like to use
logic like this

Biometrics
• Rely on statistical pattern recognition
– Thresholds to determine if the match is close enough

• False Accept Rate (FAR)
– Non-matching pair of biometric data is accepted as a match

• False Reject Rate (FRR)
– Matching pair of biometric data is rejected as a match

October 28, 2020 CS 419 © 2019 Paul Krzyzanowski 88

FRR vs. FAR

CS 419 © 2020 Paul Krzyzanowski 89

False Rejection Rate (FRR) False Acceptance Rate (FAR)
Likelihood that the authentication will reject
an authorized user

Images from https://www.bayometric.com/biometrics-face-finger-iris-palm-voice/
Used with permission

Likelihood that the authentication will accept
an unauthorized user

Biometrics: ROC Curve
Each biometric system has a characteristic ROC curve

(receiver operator characteristic, a legacy from radio electronics)

False Accept Rate (FAR)
(incorrect acceptance)

Fa
ls

e
Re

je
ct

 R
at

e
(F

RR
)

(in
co

rre
ct

 re
je

ct
io

n)

90

convenient

secure

trade-off

October 28, 2020 CS 419 © 2019 Paul Krzyzanowski

Sample ROC curve for an advanced capacitive fingerprint sensor

91October 28, 2020 CS 419 © 2019 Paul Krzyzanowski

Source: https://www.fingerprints.com/uploads/2019/10/fpc_white_paper_digital.pdf

October 28, 2020 CS 419 © 2019 Paul Krzyzanowski 92

Galaxy S9 Intelligent Scan favors
unlocking ease over security
An in-depth look at Samsung's new biometrics verification system -- and
how it stacks up against the iPhone X’s Face ID — shows it's not quite safe
enough for mobile payments.
Shara Tibken, Alfred Ng March 1, 2018 5:00 AM PST

Unlocking the Galaxy S9 might be faster -- but that doesn't mean it's more secure.

Samsung's newest smartphones, the Galaxy S9 and S9 Plus, include a new feature the
company calls Intelligent Scan. The technology combines Samsung's secure iris scanner with its
less-secure facial recognition unlock technology.

When unlocking your phone, it first will scan your face. If that fails to unlock the phone, the device
then will check your irises. If both fail, Intelligent Scan will try to authenticate your identity using a
combination of the two. And it all happens almost instantaneously.

https://www.cnet.com/news/samsung-galaxy-s9-intelligent-scan-unlock-favors-ease-over-security/

CS 419 © 2020 Paul Krzyzanowski 94

Biometric Modalities
Face Eyes Hands Signature,

Voice
Others

• Face geometry
• w/ 3-D imaging
• Thermographs
• Ear imaging

• Iris - spokes
• Retina scans

• Fingerprints
• Vein scans
• Hand geometry
– Finger length
– Contours
– Surface are

Behavioral vs.
Physical system

• DNA
• Odor
• Gait
• Driving habits
• …

Biometrics: distinct features
Example: Fingerprints
Identify minutiae points and their relative positions

source: http://anil299.tripod.com/vol_002_no_001/papers/paper005.html

95

Arches
Loops
Whorls
Ridge endings

Bifurcations
Islands
Bridges

October 28, 2020 CS 419 © 2019 Paul Krzyzanowski

Minutiae (features)

Biometrics: desirable characteristics
• Robustness
– Repeatable, not subject to large changes over time
– Fingerprints & iris patterns are more robust than voice

• Distinctiveness
– Differences in the pattern among population
– Fingerprints: typically 40-60 distinct features
– Irises: typically >250 distinct features
– Hand geometry: ~1 in 100 people may have a hand with measurements close to

yours.

96October 28, 2020 CS 419 © 2019 Paul Krzyzanowski

Biometrics: desirable characteristics

Biometric Robustness Distinctiveness Ease of Use User Acceptance

Fingerprint Moderate High Medium Medium

Face Moderate Low High High

Hand Geometry Moderate Low Medium Medium

Voice Moderate Low High High

Iris High Ultra high Medium Medium

Retina High Ultra high Low Low

Signature Low Moderate Low High

97October 28, 2020 CS 419 © 2019 Paul Krzyzanowski

Irises vs. Fingerprints
• Number of features measured:
– High-end fingerprint systems: ~40-60 features
– Iris systems: ~240 features

• False accept rates (FAR)
– Fingerprints: ~ 1:100,000 (varies by vendor; may be ~1:500)

• FRR ≈ 0 – 66%, FAR ≈ 0.01%
– Irises: ~ 1:1.2 million

• FRR ≈ 1%, FAR ≈ 0.1%
– Retina scan ~1:10,000,000

98October 28, 2020 CS 419 © 2019 Paul Krzyzanowski

Irises vs. Fingerprints
• Ease of data capture
– More difficult to damage an iris … but lighting is an issue
– Feature capture more difficult for fingerprints:

• Smudges, gloves, dryness, …

• Ease of searching
– Fingerprints cannot be normalized

1:many searches are difficult
– Irises can be normalized to generate a unique IrisCode

1:many searches much faster

99October 28, 2020 CS 419 © 2019 Paul Krzyzanowski

Biometric: authentication process
0. Enrollment
– The user’s entry in a database of biometric data needs to be

initialized

– Initial sensing and feature extraction

– May be repeated to ensure good feature
extraction

100

Biometric: authentication process
1. Sensing
– User’s characteristic must be presented to a sensor
– Output is a function of:

• Biometric measure
• The way it is presented
• Technical characteristics of sensor

2. Feature Extraction
– Signal processing
– Extract the desired biometric pattern

• remove noise and signal losses
• discard qualities that are not distinctive/repeatable
• Determine if feature is of “good quality”

101October 28, 2020 CS 419 © 2019 Paul Krzyzanowski

Biometric: authentication process
3. Pattern matching
– Sample compared to original signal in database
– Closely matched patterns have “small distances” between them
– Distances will hardly ever be 0 (perfect match)

4. Decision
– Decide if the match is close enough
– Trade-off:
¯ false non-matches leads to ­false matches

102

Sensing Feature
extraction Storage

Sensing Feature
extraction Matching

Enrollment

Authentication Result

October 28, 2020 CS 419 © 2019 Paul Krzyzanowski

Identification vs. Verification
• Identification: Who is this?
– 1:many search

• Verification: Is this Bob?
– Present a name, PIN, token
– 1:1 (or 1:small #) search

103October 28, 2020 CS 419 © 2019 Paul Krzyzanowski

Biometrics: Essential characteristics
• Trusted sensor

• Liveness testing

• Tamper resistance

• Secure communication

• Acceptable thresholds

104October 28, 2020 CS 419 © 2019 Paul Krzyzanowski

Biometrics: other characteristics
• Cooperative systems (multi-factor)
– User provides identity, such as name and/or PIN

• vs. Non-cooperative
– Users cannot be relied on to identify themselves
– Need to search large portion of database

• Overt vs. covert identification

• Habituated vs. non-habituated
– Do users regularly use (train) the system

105October 28, 2020 CS 419 © 2019 Paul Krzyzanowski

Problems with biometric systems
• Requires a sensor
– Camera works OK for iris scans & facial detection

(but a good Iris scan will also take IR light into account)

• Tampering with device or device link
– Replace sensed data– or just feed new data

• Tampering with stored data

• Biometric data cannot be compartmentalized
– You cannot have different data for your Amazon & bank accounts

• Biometric data can be stolen
– Photos, lifting fingerprints
– Once biometric data is compromised, it remains compromised
• You cannot change your iris or finger

October 28, 2020 CS 419 © 2019 Paul Krzyzanowski 106

October 28, 2020 CS 419 © 2019 Paul Krzyzanowski 108

A photo will unlock many Android
phones using facial recognition
By John E Dunn

How easy is it to bypass the average smartphone’s facial
recognition security?

According to the Dutch consumer protection organisation
Consumentenbond, in the case of several dozen Android
models, it’s a lot easier than most owners probably realise.

Its researchers tested 110 devices, finding that 42 could be beaten by holding up nothing more elaborate than a photograph
of a device’s owner.

Consumentenbond offers little detail of its testing methodology but it seems these weren’t high-resolution photographs –
almost any would do, including those grabbed from social media accounts or selfies taken on another smartphone.

While users might conclude from this test that it’s not worth turning on facial recognition, the good news is that 68 devices,
including Apple’s recent XR and XS models, resisted this simple attack, as did many other high-end Android models from
Samsung, Huawei, OnePlus, and Honor.

https://nakedsecurity.sophos.com/2019/01/08/facial-recognition-on-42-android-phones-beaten-by-photo-test/

October 28, 2020 CS 419 © 2019 Paul Krzyzanowski 109

Google Pixel 4 Face Unlock works if eyes
are shut
Chris Fox • Technology reporter • 17 October 2019

Google has confirmed the Pixel 4 smartphone's Face Unlock system can allow access
to a person's device even if they have their eyes closed.
One security expert said it was a significant problem that could allow unauthorised
access to the device.

By comparison, Apple's Face ID system checks the user is "alert" and looking at the
phone before unlocking.

Google said in a statement: "Pixel 4 Face Unlock meets the security requirements as a
strong biometric."

https://www.bbc.com/news/technology-50085630

October 28, 2020 CS 419 © 2019 Paul Krzyzanowski 110

Samsung Galaxy S8 iris scanner tricked
by photo, contact lens
Turns out the sophisticated tech can't tell the difference
between your eye and a picture with a contact lens over the iris,
a hacking club says.
Alfred NG. May 24, 2017 8:34 AM PDT

You won't believe your eyes. But maybe the Samsung Galaxy S8 will.

In the month since Samsung released its flagship device, hackers in Germany have figured how to break the phone's
iris recognition lock. Samsung has touted the biometric technology as "one of the safest ways to keep your phone
locked," claiming that a person's iris patterns are "virtually impossible to replicate."

But that's exactly what the hackers from the Chaos Computer Club say they did. The hackers used a photo shot in
night mode and from a medium distance, about the same range that would pop up in a Facebook profile picture or a
selfie. They then printed out a closeup of the person's eye and put a contact lens over the iris on the paper.

The lens is there to replicate the eye's curvature, the Chaos Computer Club said in a blog post this week. Someone
then held up the piece of paper to the Samsung Galaxy S8's iris scanner, and it unlocked as if a real person had looked
at it.

https://www.cnet.com/news/samsung-galaxy-s8-iris-scanner-tricked-photo-contact-lens/

Fraudsters Used AI to Mimic CEO’s Voice in
Unusual Cybercrime Case
Scams using artificial intelligence are a new challenge for companies
By Catherine Stupp • August 30, 2019

Criminals used artificial intelligence-based software to impersonate a chief executive’s voice
and demand a fraudulent transfer of €220,000 ($243,000) in March in what cybercrime
experts described as an unusual case of artificial intelligence being used in hacking.

The CEO of a U.K.-based energy firm thought he was speaking on the phone with his boss,
the chief executive of the firm’s German parent company, who asked him to send the funds to
a Hungarian supplier. The caller said the request was urgent, directing the executive to pay
within an hour, according to the company’s insurance firm, Euler Hermes Group SA.

October 28, 2020 CS 419 © 2019 Paul Krzyzanowski 111

https://www.wsj.com/articles/fraudsters-use-ai-to-mimic-ceos-voice-in-unusual-cybercrime-case-11567157402

October 28, 2020 CS 419 © 2019 Paul Krzyzanowski 112

Massive biometric security
flaw exposed more than one
million fingerprints
The system is used by banks, police and
defence companies.

August 14, 2019 – Rachel England, @rachel_england

A biometrics system used by banks, UK police and defence companies has suffered a major data breach,
revealing the fingerprints of more than one million people as well as unencrypted passwords, facial
recognition information and other personal data.

Biostar 2, the biometrics lock system managed by security company Suprema, uses fingerprints and facial
recognition technology to give authorised individuals access to buildings. Last month the platform was
integrated into another access system -- AEOS -- which is used by 5,700 organizations across 83
countries, including the UK Metropolitan Police.

https://www.engadget.com/2019/08/14/biometric-security-flaw-fingerprints

Samsung’s Galaxy S10 fingerprint sensor
fooled by 3D printed fingerprint
It took 13 minutes to print up the fake
By Andrew Liptak • April 7 2019

… user darkshark outlined his project: he took a picture of his fingerprint on a
wineglass, processed it in Photoshop, and made a model using 3ds Max that
allowed him to extrude the lines in the picture into a 3D version. After a 13-minute
print (and three attempts with some tweaks), he was able to print out a version of
his fingerprint that fooled the phone’s sensor.

Video: https://imgur.com/gallery/8aGqsSu

https://www.theverge.com/2019/4/7/18299366/samsung-galaxy-s10-fingerprint-sensor-fooled-3d-printed-fingerprint

This $150 mask beat Face ID on the iPhone X
It’s just a proof of concept at the moment
By Thuy Ong • Nov 13 2017

Vietnamese cybersecurity firm Bkav claims it's been
able to bypass the iPhone X's Face ID feature using a
mask. The mask is made to trick Apple's depth
mapping and the result is a kind of creepy hybrid
monster head with realistic cutouts for the eyes, nose
and mouth.

Bkav says the mask is crafted through a combination of
3D printing, makeup, and 2D images.

https://www.theverge.com/2017/11/13/16642690/bkav-iphone-x-faceid-mask

The End

October 28, 2020 115CS 419 © 2020 Paul Krzyzanowski

