
CS 419: Computer Security

Paul Krzyzanowski © 2020 Paul Krzyzanowski. No part of this
content, may be reproduced or reposted in
whole or in part in any manner without the
permission of the copyright owner.

Week 9: Blockchains & Bitcoin

Hash Pointers

November 5, 2020 CS 419 © 2020 Paul Krzyzanowski 2

Hash Pointers
Alternative to pointers in data structures

Hash pointer = { pointer, hash(data) }

pointer = reference that identifies where the object is:
memory location, file name, object ID, server/object, …

hash(data) = hash function applied to the data being pointed to

November 5, 2020 CS 419 © 2020 Paul Krzyzanowski 3

Tamper Detection With A Hash Pointer

• If an attacker modifies data, hash(data) ≠ hash in pointer
• This allows us to verify that the information we’re pointing to has not changed
– Before using that data, do a hash(data) and see if it matches the hash in the hash pointer

November 5, 2020 CS 419 © 2020 Paul Krzyzanowski 4

Data

Hash Pointer

XXXX

Hash Pointers: Linked Lists = Blockchain

• Add new data blocks to the end of the list
– Each hash pointer contains a pointer & a hash of the entire data structure to

which it is pointing: the application data and the hash pointer in that structure

Tamper Evident Log = Blockchain
November 5, 2020 CS 419 © 2020 Paul Krzyzanowski 5

Data

Hash Pointer

Data

Hash Pointer

Data

Hash Pointer

Hash Pointer head

Tamper detection

November 5, 2020 CS 419 © 2020 Paul Krzyzanowski 6

Data

Hash Pointer

Data

Hash Pointer

Data

Hash Pointer

Hash Pointer

Data

Hash Pointer

Data

Hash Pointer

head:

XXXX

Suppose an adversary changes data in this block

Block 4 Block 3 Block 2 Block 1 Block 0

Tamper detection

November 5, 2020 CS 419 © 2020 Paul Krzyzanowski 7

Data

Hash Pointer

Data

Hash Pointer

Data

Hash Pointer

Hash Pointer

Data

Hash Pointer

Data

Hash Pointer

head:

XXXX

Then this hash pointer needs to be changed
The adversary needs to update the hash in the pointer
to match the hash of the modified block

Suppose an adversary changes data in this block

Block 4 Block 3 Block 2 Block 1 Block 0

Tamper detection

November 5, 2020 CS 419 © 2020 Paul Krzyzanowski 8

Data

Hash Pointer

Data

Hash Pointer

Data

Hash Pointer

Hash Pointer

Data

Hash Pointer

Data

Hash Pointer

head:

XXXX

Then this hash pointer needs to be changed
The adversary needs to update the hash in the pointer
to match the hash of the modified block

Suppose an adversary changes data in this block

The hash in this pointer is now invalid, so it needs to be updated

Block 4 Block 3 Block 2 Block 1 Block 0

Tamper detection

• The adversary will have to change all hash pointers back to the head

• If we can keep the head of the list safe so an adversary cannot modify
it, then we can always detect tampering

November 5, 2020 CS 419 © 2020 Paul Krzyzanowski 9

Data

Hash Pointer

Data

Hash Pointer

Data

Hash Pointer

Hash Pointer

Data

Hash Pointer

Data

Hash Pointer

head:

XXXX
Block 4 Block 3 Block 2 Block 1 Block 0

Need to change the head pointer too!

It takes less effort to modify
newer blocks than older ones

Merkle Trees: Binary trees with hash pointers

• Tamper-resistant tree structure

• Only need to examine O(log2n) hashes to validate a data block
belongs to the tree

November 5, 2020 CS 419 © 2020 Paul Krzyzanowski 10

H0=Hash(D0)

Data0 Data1

H0,1=Hash(H0 || H1)

H1= Hash(D1) H2= Hash(D2)

Data2 Data3

H2,3= Hash(H2 || H3)

H3= Hash(D3)

H0-3=Hash(H0,1 || H2,3)
root hash pointer:

Merkle Tree hash pointer = { left_subtree, right_subtree, hash(left || right) }

a || b means a concatenated with b

This must be kept secure from attackers

Merkle Trees (Hash Trees): Uses
• Commonly used in peer-to-peer data updates

• You receive updated content from an untrusted peer
– Validate that the data blocks have not been damaged or modified
– Don't need to wait for all content to be downloaded
– Root hash should be obtained from a trusted place (or signed)

• Used in
– Version control systems: Git, Mercurial
– File systems (to detect data damage): ZFS, IPFS
– Distributed databases: Cassandra, Dynamo, Riak
– Backup systems: Tahoe-LAFS
– Decentralized websites: ZeroNet
– Cryptocurrency: Bitcoin & Ethereum (maybe others)

November 5, 2020 CS 419 © 2020 Paul Krzyzanowski 11

Bitcoin

November 5, 2020 CS 419 © 2020 Paul Krzyzanowski 12

Bitcoin Cryptocurrency
• Introduced in 2009 – anonymously by Satoshi Nakamoto

• First blockchain

• Designed to be public
– Anyone can participate in the system & use it
– Users are anonymous

• Currency that is totally separate from any sovereign government
– Anyone can create money!

November 5, 2020 CS 419 © 2020 Paul Krzyzanowski 13

Traditional Payments
• Suppose Alice wants to pay Charles
– Send a message to the bank: transfer $500 from Alice to Charles

• Bank is a trusted third party
– Owns register of activity & account balances
– Only the bank can manipulate the data
– Also – banks control supply of money

November 5, 2020 CS 419 © 2020 Paul Krzyzanowski 14

Alice Charles

Request

Transaction Log
Alice: $500 to Charles

You've got money!

Ledger

Bank

Centralized systems
Transactions are simply modifications to the bank's database

• We can simply
– Subtract $500 from Alice's account
– Add $500 to Charles' account

• Having a log is just nice for auditing but not necessary

November 5, 2020 CS 419 © 2020 Paul Krzyzanowski 15

Problems?

This is a centralized system
We trust the bank – it is a trusted third party

• What if the bank disappears?

• What if the banker makes a mistake?

• What if the banker is corrupt?

November 5, 2020 CS 419 © 2020 Paul Krzyzanowski 16

Decentralized Solution – Bitcoin
• Blockchain = ledger = complete list of ALL transactions
– Since Bitcoin was started in January 2009
– 307,833 MB as of Nov 1, 2020 (See https://www.blockchain.com/en/charts/blocks-size for the current size of the ledgers)

• Complete copies of the ledger are replicated around the world
– 11,177 nodes (Nov 1, 2020) – all peers – running identical software (See https://bitnodes.earn.com)

– There is no master node or master version

• New systems can do a DNS query for well known peers
– Names hardcoded in source (DNS seeds)
– Return list of IP addresses of bitcoin nodes
– Then use peer discovery process to find others

November 5, 2020 CS 419 © 2020 Paul Krzyzanowski 17

Node B

Alice: ₿ 0.1 to Bob
Bob: ₿ 0.5 to Charles
Alice: ₿ 0.01 to Emily
…

Node A

Alice: ₿ 0.1 to Bob
Bob: ₿ 0.5 to Charles
Alice: ₿ 0.01 to Emily
…

Node C

Alice: ₿ 0.1 to Bob
Bob: ₿ 0.5 to Charles
Alice: ₿ 0.01 to Emily
…

Node D

Alice: ₿ 0.1 to Bob
Bob: ₿ 0.5 to Charles
Alice: ₿ 0.01 to Emily
…

REPLICAS

https://www.blockchain.com/en/charts/blocks-size
https://bitnodes.earn.com/

Global Bitcoin Nodes

18November 5, 2020 CS 419 © 2020 Paul Krzyzanowski

November 1 2020 • https://bitnodes.earn.com

Global Bitcoin Nodes – compute power

19CS 419 © 2020 Paul Krzyzanowski

November 2 2020 • https://cbeci.org/mining_map

Identities
• User creates a {public, private} key pair that defines her wallet
– 256-bit Elliptic Curve Digital Signature Algorithm (ECDSA) used
– The wallet is just local place for users to store these keys
• Wallets may store a transaction list but that’s just for user records – the bitcoin network doesn’t care

• Bitcoins are associated with keys, not users
– Users are anonymous
– A user’s ID is the public key – anonymous – no association to name
– The user’s identity is called their address
– Users may have multiple keys & multiple addresses

• Every transaction is signed with the creator’s private key
– Transaction identifies the user by the public key and can be verified
– We know only the person with the corresponding private key could have created the request

Nobody to call if you lose your private key!

November 5, 2020 CS 419 © 2020 Paul Krzyzanowski 20

Bitcoin address = hash(public_key)
Bitcoin uses ECDSA: Elliptic Curve Digital Signature Algorithm

A user creates one or more identities = { private, public } key pairs
You can create an identity (address) for each new transaction

How Bitcoin addresses are created*
1. Generate an ECDSA public, private key pair
2. Create a SHA-256 hash of the public key
3. Perform a RIPEMD-160 hash on that
4. Add a version byte in front of the result
5. Perform a SHA-256 hash on the result … and a SHA-256 hash on that
6. First 4 bytes of the result = address checksum
7. Add 4 bytes from [6] to the end of the RIPEMD-160 hash from [4]
8. Convert the byte to a base-58 string using Base58Check encoding.

This produces a 20-byte address

21

*You don’t have to know this.

November 5, 2020 CS 419 © 2020 Paul Krzyzanowski

Addresses vs. keys
• Spending: Bob wants to send Alice 5 bitcoins
– Bob creates a transaction with a digital signature using his private key
– Presents his public key along with the transaction
– Any receiving node can validate that the transaction was signed by someone with the

corresponding private key
– The destination of the money is Alice’s address

• Addresses are not accounts
– They only receive funds
– You can use those funds if you prove you know the private key that corresponds to the

address
– If Alice wants to use the coins she received
• She creates a new transaction with her public key & a digital signature
• Any node can validate that the address belongs to her
• No node can figure out Alice’s public key just by looking at the address

November 5, 2020 CS 419 © 2020 Paul Krzyzanowski 22

https://learnmeabitcoin.com/guide/public-key-hash160

Transactions: Inputs
If Alice wants to send some bitcoin to Charles
– She creates a transaction and sends it to one or more bitcoin nodes
– A node tells its peers about the transaction
– Within ~5 sec. every peer on the network has it
– The transaction is currently unconfirmed

A blockchain is NOT a database – it’s a list of transactions
– There are no accounts to query
– Alice needs to provide links to previous transactions that will add up to at least the required

amount – these are inputs

A node verifies inputs
– Make sure they have not been used by another transaction—this would be double spending
– Make sure there is sufficient money in the inputs

November 5, 2020 CS 419 © 2020 Paul Krzyzanowski 23

Addresses vs. keys – Inputs and Outputs
If Alice wants to use the coins she received:
– She creates a new transaction

with her public key &
a digital signature

– Any node can validate the
signature using her public
key

24

The transaction can be validated by validating each input:
1. Validate the signature using Alice’s public key (in the transaction). This proves that whoever created the signature has the

private key corresponding to the public key.
2. Hash the public key in the transaction to create the address – see if it matches the address in the referenced transaction
3. No node can figure out Alice’s public key just by looking at the address

Output: 1PMycacnJaSqwwJqjawXBErnLsZ7RkXUAs Alice’s address
Amount: ₿ 0.1
…

Transaction 10732

Transaction 71991
Output: PWJ2sc9aV72kknbi3R9sjcXVcMXpkdh9Le5

Address to whom she’s sending the money

Input:
Source: 10732 pointer to transaction where Alice got the money
Public key: 0250863ad64a87ae8a2fe83c1af1a…dad8a04887e5b2352 Alice’s public key
Signature: a3bb7c5f22079c…. Alice’s signature (using her private key)

November 5, 2020 CS 419 © 2020 Paul Krzyzanowski

https://learnmeabitcoin.com/guide/public-key-hash160

Transactions: Inputs & Outputs
A transaction contains:
1. One or more inputs: transaction IDs & address where coin comes from
– Contains signature & public key
– An input is a reference to the output from a previous transaction

2. Output: whom the money goes to – destination address & amount

3. Change: owner’s address & amount
– Every input must be completely spent
– Any excess change can be generated as another output to the owner of the transaction

4. Transaction fee (anywhere from 10¢ to a few $ per transaction – currently ~ $13)
– There’s a limited amount of space (1 MB) in a block. A transaction is about 250 bytes. To get

your transaction processed quickly, you need to outbid others.

The amount of bitcoin you own is the set of transactions in the system that are
outputs to your address but have NOT been used as inputs in any transaction
November 5, 2020 CS 419 © 2020 Paul Krzyzanowski 25

Blocks
Transactions are grouped into blocks
– Each block holds ~2,220 transactions @250 bytes and is ~1.25 MB in size

Bitcoin ledger = linked list of chronologically-ordered blocks

Approximately every 10 minutes, a new block of transactions is added to the blockchain

Each block has
– A link to the previous block
– SHA-256 hash of the previous block

November 5, 2020 CS 419 © 2020 Paul Krzyzanowski 26

Block
0

Genesis block

Block
1

Block
2

Block
655,047

This creates the blockchain:
hash pointers – a tamper-evident log

Transactions in blocks: Merkle trees
Transactions within a block are stored in a Merkle tree
– Binary tree of hash pointers
– Using a tree makes it easy to find one of thousands of transactions
– A Merkle tree makes it easy to check if the transaction is valid

November 5, 2020 CS 419 © 2020 Paul Krzyzanowski 27

T0 T1

H0,1 = Hash(H0 || H1)

H0 =Hash(T0) H1 = Hash(T1)

T2 T3

H2,3 = Hash(H2 || H3)

H2 = Hash(T2) H3 = Hash(T3)

TROOT = Hash(H0,1 || H2,3)

hash(prev_block) Timestamp
Nonce

Block N header

Agreement & adding blocks
Each node groups transactions into a block & can propose it as the next block in the
blockchain
– Transactions can reach nodes in a different order
– We want all nodes to agree on the sequence of blocks in the blockchain

A linked list of hash pointers (blockchain) is a tamper-proof structure
– If the contents of any block are modified, then the hash pointer that points to the block will not be valid (the

hash in the pointer won’t match)
– But can’t anyone change the hash pointers?

We might want to use signed pointers but there’s no central authority (no trusted party), so that won’t work

Let’s create a system where
(a) Everyone can agree on the sequence of blocks
(b) That sequence cannot be modified

To add a block to the chain, the hash of the block must meet a certain requirement

November 5, 2020 CS 419 © 2020 Paul Krzyzanowski 28

Make block addition challenging: create a puzzle
Suppose we want a hash value to have a specific property:
– Example: the hash should start with with "0000"

There is no algorithmic way to do this

Must try lots of variations of the input

But once found –
it is easy for anyone to verify that the data hashes to the result

Just hash the data and see if the hash starts with “0000”

November 5, 2020 CS 419 © 2020 Paul Krzyzanowski 29

Mining
Solving this "puzzle" is called mining
– A block has a 32-bit field in the block where we can try different numbers
– Try to get the block to hash to a desired output
– The resulting number is called the Proof of Work – difficult to generate but easy to verify

We demonstrate that work has been put into figuring out what the value
should be to create the desired hash

Everyone in the network can participate in this
– The first system that finds it announces the block to everyone else in the network
– Upon receiving an announcement of a new block:

1. Each system validates the Proof of Work number against the block
2. A majority of systems must grant approval
3. If they do, the block (with the Proof of Work) is made part of the blockchain

November 5, 2020 CS 419 © 2020 Paul Krzyzanowski 30

What's the puzzle?
• Bitcoin uses a version of hashcash (created in 1997)
– Search for a SHA-256 hash:

hash(block_header) < target value
– Choice of target_value sets the difficulty of the problem

• Hashed block header contains:
– Version number
– Hash pointer to previous block
– Merkle root hash (hash of all transactions in the block)
– Timestamp when mining started on the block
– Difficulty target (compact format – 4 bytes)
– N – nonce: the 32-bit number we modify to get the hash with the properties we need

November 5, 2020 CS 419 © 2020 Paul Krzyzanowski 31

Adjusting the target
• Bitcoin self-tunes so a new block is mined every 10 minutes on average

• Proof of Work Target number is adjusted every 2,016 blocks
– 2016 blocks × 10 minutes ≈ approximately every two weeks
• Look at timestamps in the last 2016 blocks

– Adjust the value to bring it to two weeks
• If the previous 2016 blocks took > 2 weeks to mine, the number is adjusted to make mining easier

(bigger value)
• If the blocks took less time to mine, the number is adjusted to make mining more difficult

• Target value
– Roughly – the number of leading zero bits in the hash output
– Target is a # with a very large # of leading 0s – currently ~17

November 5, 2020 CS 419 © 2020 Paul Krzyzanowski 32

See: https://chainbulletin.com/proof-of-work-explained-in-simple-terms/
https://www.investopedia.com/terms/b/bitcoin-mining.asp

Isn’t a 32-bit nonce too small?
A 32-bit nonce field might not be sufficient
– There might be NO value of the nonce that will produce the right hash

The node then needs to modify other data in the block header & try again
– Make small changes to the timestamp
– New transactions may be added
– If nonce overflows, increment extraNonce & reset nonce
• extraNonce is 2-100 bytes
• Changing extraNonce alters the Merkle root hash
– That needs to be recomputed

33November 5, 2020 CS 419 © 2020 Paul Krzyzanowski

How much work is going on?

November 5, 2020 CS 419 © 2020 Paul Krzyzanowski 34

See https://bitinfocharts.com/comparison/bitcoin-hashrate.html#2y

H
as

h
ra

te
 in

 1
01

8
(e

xa
-)

ha
sh

es
 p

er
 s

ec
on

d

Currently (Nov 2020), average 113×1018 hashes per second

Bitcoin mining
Computing the hash = mining

If you come up with the right answer, you win!

1. You send your block, with the nonce in it, to the whole network

2. Others validate it

3. When a computer validates your block, it adds it to its ledger

4. You get a reward for solving the puzzle! Currently 6.25 BTC

5. You also get paid transaction fees in the transactions you put into the block

6. The block (not transactions!) is confirmed and you get paid

7. Individual transactions may require the confirmation of multiple subsequent blocks
... More on this later….

35November 5, 2020 CS 419 © 2020 Paul Krzyzanowski

Bitcoin mining
The more hashes you can try, the better your chances of winning

• You’re competing with every other miner

• People moved from CPU-based mining to GPU-based
– GPU power approximately = 30 CPUs
– Then FPGA mining: approximately 3-100x faster than GPUs
– ASIC mining (application-specific integrated circuit):
• Special hardware built for hash computation: faster & more power efficient

• Mining pools = group miners together & share rewards
– There are over a dozen large pools for Bitcoin

36November 5, 2020 CS 419 © 2020 Paul Krzyzanowski

Mining Hardware
CPU → GPU → FPGA → ASIC

37

Example:
Bitmain
Antminer S19 Pro

Computes SHA-256 hashes at 110 TH/s
~$3,200

Consumes 3250 watts
Estimated profit: $834.14/year

November 5, 2020 CS 419 © 2020 Paul Krzyzanowski

https://www.asicminervalue.com/miners/bitmain/antminer-s19-pro-110th

November 5, 2020 CS 419 © 2020 Paul Krzyzanowski 38

https://www.engadget.com/it-takes-an-estimated-seven-nuclear-plants-to-power-our-bitcoin-mining-212441059.html

It takes an estimated seven nuclear
plants to power our bitcoin mining
That's 21.8 million solar panels worth of production.

Andrew Tarantola – August 26, 2020

Turns out that plugging a bunch of computers
into our electrical grid that do nothing but draw
current and hash through algorithms has had
some negative environmental impacts. Recent
studies suggest that Bitcoin-related power
consumption has reached record highs this
year — with more than seven gigawatts of power
being pulled in the pursuit of the suspect digital currency.

A study from the Cambridge Center for Alternative Finance released on Monday estimates
that the global bitcoin mining industry uses 7.46 GW, equivalent to around 63.32 terawatt-
hours of energy consumption. The study also notes that miners are paying around $0.03 to
$0.05 per kWh this year. Given that a March estimate put the cost to mine a full bitcoin is
around $7,500, the average miner still stands to make over $4,000 in profit from the
operation.

November 5, 2020 CS 419 © 2020 Paul Krzyzanowski 39

Competing chains
What if a malicious participant wants to modify an old transaction?
– It will need to modify an old block
– And recompute the Proof of Work (which takes a lot of effort)

for the block and each successive block (tons of work)
– The participant will be creating another chain in the blockchain

November 5, 2020 CS 419 © 2020 Paul Krzyzanowski 40

old blocks new blocks

Competing chains
BUT:
– One malicious participant will not be able to catch up with the cumulative work of all the others
– It is expected that some nodes will occasionally have different versions
– Length of chain = score

If we two versions of the blockchain,
we select the one that was the hardest to generate (= longest chain)

Blockchain rules state that

The longest chain in the network is the correct one
If a participant receives a higher-scoring version, it overwrites its blockchain with the better data &
transmits updates to peers

Producing a longer ledger than the current one requires computing power that
competes with the rest of the entire network

November 5, 2020 CS 419 © 2020 Paul Krzyzanowski 41

51% Attack
If a participant has the majority of the hash rate, the protocol will fail

Blockchain works only because of the assumption that the majority of
participants are honest

To double-spend a bitcoin:
• You would need to rewrite the blockchain (change past transactions)

• An attacker would need to control more than 50% of computing capacity
– This is a lot: as of 12/17, The Economist estimates

"bitcoin miners now have 13,000 times more combined number- crunching power than the world’s 500
biggest supercomputers"

– Even if someone tried to do this attack, they'd likely only modify transactions in the past few blocks

• Keeping history of all transactions among all participants allows anyone to check for double
spending

November 5, 2020 CS 419 © 2020 Paul Krzyzanowski 42

Confirming transactions
A transaction is confirmed after N number of
additional blocks are added to the blockchain
– Large values of N are recommended for

high-value transactions

The more blocks are added after a transaction,
the more difficult it is to modify it

Higher values of N mean that an attacker will need to recompute N+1 Proof
of Work values to modify the blockchain
– Computationally not feasible

November 5, 2020 CS 419 © 2020 Paul Krzyzanowski 43

Bitcoin Confirmation
Recommendations

1: Small payments <$1,000
3: Deposits and payments of

$1,000-$10,000
6: Large payments $10k-$1M
60: Payments >$1M

https://www.buybitcoinworldwide.com/confirmations/

Incentives
Computing the Proof of Work takes a lot of work – why do it?

To get earn bitcoin:
– First participant to compute the Proof of Work gets rewarded with bitcoin
– BUT … only after another 99 blocks have been added to the ledger
– This gives miners an incentive to participate & validate transactions

Reward is decreasing (assumption: bitcoins will be more valuable)
– 50 bitcoins for the first 4 years since 2008
– 25 bitcoins from 2012-2015
– 12.5 bitcoins from block #420,000 July 9, 2016 – 2019
– 6.25 bitcoins at block #630,000 – around May 24, 2020

Eventually there will be a maximum of ~21 million bitcoins
There are also transaction fees even if the block reward = 0

November 5, 2020 CS 419 © 2020 Paul Krzyzanowski 44

Centralization
• Anyone can run a bitcoin node
– Requires a good chunk of disk space but is accessible
– Highly decentralized

• Mining
– Anyone can mine but requires a lot of computing power
– Not as decentralized as we'd like

• Software development/support
– Open but there's a core set of trusted developers – not really decentralized
– Bugs may be fixed … but transactions cannot be undone

• In theory
– Teams of sneaky developers may be able to mount an attack
– Mining pools may try to mount a 51% attack
– Both scenarios highly unlikely today

November 5, 2020 CS 419 © 2020 Paul Krzyzanowski 45

51% attack: difficult, not impossible

46

Once hailed as unhackable, blockchains are now getting hacked

More and more security holes are appearing in cryptocurrency and smart contract platforms, and
some are fundamental to the way they were built.

By Mike Orcutt February 19, 2019

Early last month, the security team at Coinbase noticed something strange going on in
Ethereum Classic, one of the cryptocurrencies people can buy and sell using Coinbase’s
popular exchange platform. Its blockchain, the history of all its transactions, was under
attack.

An attacker had somehow gained control of more than half of the network’s computing
power and was using it to rewrite the transaction history. That made it possible to spend
the same cryptocurrency more than once—known as “double spends.” The attacker
was spotted pulling this off to the tune of $1.1 million.

https://www.technologyreview.com/s/612974/once-hailed-as-unhackable-blockchains-are-now-getting-hacked/

November 5, 2020 CS 419 © 2020 Paul Krzyzanowski

47

Two Miners Purportedly Execute 51%
Attack on Bitcoin Cash Blockchain
Max Boddy May 25, 2019

Two miners have reportedly executed a 51% attack on the bitcoin cash
(BCH) blockchain, according to tweets by Cryptoconomy Podcast host Guy
Swann on May 24.

A 51% attack occurs when someone controls the majority of mining power
on a Proof-of-Work blockchain network. This means that the majority block
verifier can prevent other users from mining and reverse transactions.

While many have assumed that a 51% attack would be carried out with
malicious intent, the above case happened as the two mining pools
attempted to prevent an unidentified party from taking some coins that —
due to a code update — were essentially “up for grabs.”

https://cointelegraph.com/news/two-miners-purportedly-execute-51-attack-on-bitcoin-cash-blockchain

November 5, 2020 CS 419 © 2020 Paul Krzyzanowski

Achieving anonymity is difficult

48

https://www.cnn.com/2019/04/19/tech/bitcoin-mueller-russia/index.html

The blockchain contains no personally identifiable information.
But once someone figures out a user is responsible for one
transaction, they can track the entire Bitcoin history.

November 5, 2020 CS 419 © 2020 Paul Krzyzanowski

49

Michael Sheetz
November 4, 2019

A forensic study on bitcoin’s 2017
boom has found that nearly the
entire rise of the digital currency at
the time is attributable to “one
large player,” although the market manipulator remains unidentified.

Finance professors John Griffin and Amin Shams – instructors at University of Texas and the Ohio State
University, respectively – analyzed over 200 gigabytes of data for the transaction history between bitcoin and
tether, another digital currency. Tether is an asset known as a “stablecoin,” which has its trading value
connected to the dollar.

The professors’ study found that tethers being traded for bitcoins revealed a pattern.

A single anonymous market manipulator
caused bitcoin to top $20,000 two years
ago, study shows

https://www.cnbc.com/2019/11/04/study-single-anonymous-market-manipulator-pushed-bitcoin-to-20000.html

One of the SEC’s top worries is that crypto is subject to manipulation

A forensic study found that tethers, a digital currency, being traded for
bitcoins, revealed a pattern of manipulation during the 2017 cryprocurrency
boom.

“Almost the entire price impact can be attributed to this one large player,”
finance professors John Griffin and Amin Shams wrote.

November 5, 2020 CS 419 © 2020 Paul Krzyzanowski

Where are we heading?
• There are currently ~2300 cryptocurrencies

• Some are tied to real currency
– E.g., Tether’s stablecoin backed by $
– Designed to park funds during times of high volatility
– But they admitted that it only has 74% in of Tether backed by cash reserves

50November 5, 2020 CS 419 © 2020 Paul Krzyzanowski

November 5, 2020 CS 419 © 2020 Paul Krzyzanowski 51

French Students Will
Now Have to Learn
About Bitcoin
Jennings Brown • November 1, 2019

High school students in France may be among the first people in the world to
actually understand how cryptocurrency works.

The Next Web reports that the French education ministry, Le Ministère de
l’Éducation Nationale, will integrate cryptocurrency into its curriculum and
teach students the influence that bitcoin has on the economy. An outline of
the curriculum notes that under this new module, high school teachers will
provide a basic overview of cryptocurrency so students can understand the
framework of decentralized financial systems.

https://gizmodo.com/french-students-will-now-have-to-learn-about-bitcoin-1839547502

November 5, 2020 CS 419 © 2020 Paul Krzyzanowski 52

November 5, 2020 CS 419 © 2020 Paul Krzyzanowski 53

https://thecorrespondent.com/655/blockchain-the-amazing-solution-for-almost-nothing/86714927310-8f431cae

The End

November 5, 2020 54CS 419 © 2020 Paul Krzyzanowski

